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2.1 Edge computing and embedded Artificial Intelligence 
 

2.1.1 Summary 
 

Edge computing and embedded AI are crucial for advancing digital technologies while addressing energy 

efficiency, system complexity, and sustainability. The integration of AI into edge devices offers significant 

benefits across various sectors, contributing to a more efficient and resilient digital infrastructure, keeping 

privacy by processing sensible data locally. Distributed computing forms a continuum from edge to cloud, 

with edge computing processing data close to its source to improve performance, reduce data 

transmission, latency and bandwidth, enhance safety, security and decrease global power consumption. 

This directly impacts the features of edge systems.  

AI, especially embedded intelligence and Agentic AI, significantly influences various sectors such as 

productivity, environmental preservation, and transportation, enabling for example autonomous vehicles. 

The availability of new hardware technologies drives AI sustainability. Open-source initiatives are crucial 

for innovation, cost reduction, and security. 

Embedded AI hardware was principally developed for perception tasks (vision, audio, signal processing) 

with high energy efficiency, but generative AI is emerging also at the edge, first fueled by smartphones 

and computers (Copilot+PC, Apple Intelligence) with the need to be able to process most of the data 

locally and adapting to the user’s habits (fine tuning performed at the edge), and will extend to other edge 

applications (robotics, interfaces, high level perception of the environment). This drives new constraints 

not only for computing parts, but also to improve memory efficiency. 

The Major Challenges are: 

1. Energy Efficiency: Developing innovative hardware architectures and minimizing data movement 

are critical for energy-efficient computing systems. Memory is becoming an important challenge as we 

are moving from a computing centric paradigm to a data centric (driven by AI). Zero standby energy and 

energy proportionality to load is essential for edge devices. 

2. System Complexity Management: Addressing the complexity of embedded systems through 

interoperability, modularity, and dynamic resource allocation in a safe and secure way. Web technologies 

cascade to edge (containerization, WASM, protocols, …) forming a continuum of computing resources. 

Using a federation of small models in a Mixture of Agents or Agentic AI instead of a very large model 

allows to better manage complexity and modularity while using less computing resources. 

3. Lifespan of Devices: Enhancing hardware support for software upgradability, interoperability, and 

second-life applications. This will require hardware that can support future software updates, increasing 

memory capabilities, and communication stacks. Aggregation of various devices into a “virtual device” will 

allow older devices to be still useful in the pool. 

4. Sustainability: Ensuring European sustainability by developing solutions aligned with ethical 

principles (for embedded AI) and transforming innovations into commercial successes (for example, based 

on open standards, such as RISC-V, and for innovative solutions such as neuromorphic computing). Europe 

should master all steps for new AI technologies, especially the ones based on collaboration of AI agents.  
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2.1.2 Scope 
This chapter focuses on computing components, and more specifically on embedded architectures, edge 

computing devices and systems using Artificial Intelligence (AI) at the edge.  These elements rely on 

process technology and embedded software, and have constraints on quality, reliability, safety, and 

security. They also rely on system composition (systems of systems) and design and tools techniques to 

fulfill the requirements of the various application domains.  

Furthermore, this chapter focuses on the trade-off between performances and power consumption 

reduction, and managing complexity (including security, safety, and privacy1) for embedded 

architectures to be used in different applications areas, which will spread edge computing and AI use 

and their contribution to European sustainability2. 

 

This chapter mainly covers the elements foreseen to be used to compose AI or edge systems: 

• Processors (CPU) with high energy efficiency,  

• Accelerators (for AI and for other tasks, such as security): 

 

1 Security, safety, and privacy will be covered in the Chapter about “Quality, reliability, safety and security” 
2 The scope of this Chapter is therefore to cover the hardware architectures and their realizations (Systems on Chip, 

Embedded architectures), mainly for edge and “near the user” devices such as IoT devices, cars, ICT for factories and 

local processing and servers (computing “on-premises”).  Data centers and electronic components for data centers 

are not the main focus of the chapter, except when the components can be used in local processing units or local 

servers (local clouds, swarm, fog computing, etc.). We therefore also cover this “edge” side of the “continuum of 

computing” and the synergies with the cloud leading the following sections to  discuss 

o innovation which is needed to transfer HPC data center capabilities to edge and/or embedded 

environment, and  

o innovation which directly addresses the embedded market (as opposed to technologies first 

developed for controlled, data center like environments, then later moved to embedded domain).  

The technological aspects, at system level (PCB, assembly, system architecture, etc.), and embedded and application 

software are not part of this chapter as they are covered in other chapters. Software is important for these 

programmable or configurable embedded devices but will be handled in the “embedded software” chapter. 

However, we will still discuss architectures that efficiently execute software (“hardware friendly” software).  

In the previous editions of the SRIA, this chapter dealt on Open Source and sustainability: these are transversal 

topics, to be addressed in the introductory chapter of the SRIA. In particular, some of the points currently covered 

by this chapter 2.1 regarding sustainability could be moved to other chapters:  

o How to limit CO2 emissions incurred during ECS manufacturing is covered by chapters 1.1 and 1.2. 

o Architectural approaches to limit energy consumption could be covered by chapter 2.3. 

However, the RISC-V architecture and related IPs will still be covered in this chapter. 
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o GPU (and their generic usage), 

o NPU (Neural processing unit) 

o DPU (Data processing Unit, e.g. logging and collecting information for automotive and other 

systems) and processing data early (decreasing the load on processors/accelerators), 

o Other accelerators xPU (FPU, IPU, TPU, XPU, …) 

• Memories and associated controllers, specialized for low power and/or for processing data locally 

(e.g. using non-volatile memories such as PCRAM, CBRAM, MRAM for synaptic functions, and 

In/Near Memory Computing), etc. 

• Power management. 

• …3 

In a nutshell, the main recommendation of this chapter is a paradigm shift towards distributed low power 

architectures/topologies, from cloud to edge (what is called the “continuum of computing”) and using AI 

at the edge (but not necessarily only) leading to distributed intelligence.  

 

2.1.3 Introduction 
 

2.1.3.1 Positioning edge and cloud solutions 

 

In the recent months, we saw more and more the emergence of what we can call the “continuum of 

computing”. The "continuum of computing" is a paradigm shift that merges edge computing and cloud 

computing into a cohesive, synergistic system. Rather than opposing each other, these two approaches 

complement one another, working together to optimize computational efficiency and resource allocation. 

The main idea behind this continuum is to perform computation where it is most efficient. In its advanced 

evolution, the location of computing is not static, but dynamic allowing a smooth migration of tasks or 

services to where the best trade-off , according to criteria such as latency, bandwidth, cost, processing 

power and energy, are available. It also permits to create “virtual meta devices” by interconnecting 

various devices with various characteristics into a more global system where each individual device (or 

 

3 Of course, all the elements to build a SoC are also necessary, but not specifically in the scope of this chapter:  

• Security infrastructure (e.g. Secure Enclave) with placeholder for customer-specific secure elements (PUF, 
cryptographic IPs…). Security requirements are dealt with details in the corresponding chapter. The 
appearance of LLMs / Generative AI calls for security measures, e.g. proof of origin/authenticity etc. will 
have an impact on the hardware. They should also run efficiently, in a protected environment without 
consuming too many resources. 

• Field connectivity IPs (see connectivity Chapter, but the focus here is on field connectivity) (all kinds, 
wired, wireless, optical), ensuring interoperability. 

• Integration using chiplet and interposer interfacing units are detailed in the chapters 1.1 and 1.2. 

• And all other elements such as coherent cache infrastructure for many-cores, scratchpad memories, 
smart DMA, NoC with on-chip interfaces at router level to connect cores (coherent), memory (cache or 
not) and IOs (IO coherent or not), SerDes, high speed peripherals (PCIe controllers and switches, etc.), 
trace and debug hardware and low/medium speed peripherals (I2C, UART, SPI etc.). 
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part of a device) is executing a part of the global task. This has impact on various aspects of each device, 

for example increasing their lifetime by coupling them with others when they are not powerful enough to 

perform alone the requested task. Of course, this introduces complexity in the orchestration of the 

devices and the splitting of the global task into small sub-tasks, each device should be interconnected with 

secure protocol and authentication is key to ensure a trustable use of all devices into this federation. 

An example for "continuum of computing" is Apple’s approach to AI, as illustrated by the announcement 

of Apple Intelligence. In this system, AI tasks are performed locally on the device when the local processing 

resources are sufficient. This ensures rapid responses and minimizes the need for data to be transmitted 

over networks, which can save energy and protect user privacy. For instance, simple AI tasks like voice 

recognition or routine summarizing, organizing text can be handled efficiently by the device’s onboard 

accelerators (NPU). 

However, when a task exceeds the local device's processing capabilities, it is seamlessly offloaded to 

Apple's trusted cloud infrastructure. This hybrid approach allows for more complex computations to be 

performed without overwhelming the local device, ensuring a smooth user experience. Moreover, for 

tasks that require even more powerful AI, such as those involving large language models like Chat-GPT, 

the system can leverage the resources of cloud-based AI services. This layered strategy ensures that users 

benefit from the best possible performance and efficiency, irrespective of the complexity of the task. 

The continuum of computing embodies a flexible, adaptive approach to resource utilization, ensuring that 

computational tasks are handled by the most appropriate platform4. This also has impact on the 

architecture of edge devices and processors, which need to be prepared to support the WEB and cloud 

protocols (and AI), with communication stacks, security and encryption, and containerization (executing 

“foreign” codes in secure sandboxes). We can observe that microcontrollers can now support the wired 

and wireless communication stacks (IP, Wifi, Bluetooth, Thread, …), have security IPs and encryption and 

can execute different OS on their different cores (e.g. a real-time OS and a Linux)5.  

 

 

 

4 Some OS are designed for this kind of distribution, like HarmonyOS ( 
https://developer.huawei.com/consumer/en/doc/harmonyos-guides-V3/harmonyos-overview-
0000000000011903-V3 ) : « The devices running HarmonyOS are aggregated at the system layer to form a super 
device, allowing flexible scaling of device hardware capabilities. 
With the support of HarmonyOS, users can integrate capabilities of their various smart devices, implementing ultra-
fast connection, capability collaboration, and resource sharing among them. This way, services can be seamlessly 
transferred to the most suitable device, delivering smooth all-scenario experience. ».  Some concepts are also 
developed in the open source Oniro project (https://oniroproject.org/ ) ), also based on OpenHarmony ( 
https://gitee.com/openharmony ). 
 
5 The Chinese companies are pushing their low-cost MCU (often based on RISC-V architecture) with all these 
features, for example,  the Sophgo SG2002 ( https://en.sophgo.com/sophon-u/product/introduce/sg200x.html ) or 
the Espressif ESP32-C6 (https://www.espressif.com/en/products/socs/esp32-c6 ). 

https://developer.huawei.com/consumer/en/doc/harmonyos-guides-V3/harmonyos-overview-0000000000011903-V3
https://developer.huawei.com/consumer/en/doc/harmonyos-guides-V3/harmonyos-overview-0000000000011903-V3
https://oniroproject.org/
https://gitee.com/openharmony
https://en.sophgo.com/sophon-u/product/introduce/sg200x.html
https://www.espressif.com/en/products/socs/esp32-c6
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Figure 1: - The continuum of computing and relations between the elements constituting an embedded AI 
system (figure from Gerd Teepe) 

Inside the “continuum of computing”, edge computing involves processing data locally, close to where it 

is generated. This approach reduces latency, enhances real-time decision-making, and can improve data 

privacy and security by keeping sensitive information on local devices. Cloud computing, on the other 

hand, offers immense computational power and storage capacity, making it ideal for tasks that require 

extensive resources, such as large-scale data analysis and running complex AI models. 

For intelligent embedded systems, the edge computing concept is reflected in the development of edge 

computing levels (micro, deep, meta) that covers the computing and intelligence continuum from the 

sensors/actuators, processing, units, controllers, gateways, on-premises servers to the interface with 

multi-access, fog, and cloud computing.  

A description of the micro, deep and meta edge concepts is provided in the following paragraphs (as 

proposed by the AIoT community).  

The micro-edge describes intelligent sensors, machine vision, and IIoT devices that generate insight data 

and are implemented using microcontrollers built around processors architectures such as ARM Cortex 

M4, or recently RISC-V, which are focused on minimizing costs and power consumption. The distance from 

the data source measured by the sensors is minimized. The compute resources process this raw data in 

line and produce insight data with minimal latency. The hardware devices of the micro-edge physical 

sensors/actuators generate from raw data insight data and/or actuate based on physical objects by 

integrating AI-based elements into these devices and running AI-based techniques for inference and self-

training.  

Intelligent micro-edge allows IoT real-time applications to become ubiquitous and merged into the 

environment where various IoT devices can sense their environments and react fast and intelligently with 

an excellent energy-efficient gain. Integrating AI capabilities into IoT devices significantly enhances their 

functionality, both by introducing entirely new capabilities, and, for example, by replacing accurate 

algorithmic implementations of complex tasks with AI-based approximations that are better embeddable. 

Overall, this can improve performance, reduce latency, and power consumption, and at the same time 

increase the devices usefulness, especially when the full power of these networked devices is harnessed 

– a trend called AI on edge. 



DRAFT

 

The deep-edge comprises intelligent controllers PLCs, SCADA elements, connected machine vision 

embedded systems, networking equipment, gateways and computing units that aggregate data from the 

sensors/actuators of the IoT devices generating data. Deep edge processing resources are implemented 

with performant processors and microcontrollers such as Intel i-series, Atom, ARM M7+, etc., including 

CPUs, GPUs, TPUs, and ASICs. The system architecture, including the deep edge, depends on the 

envisioned functionality and deployment options considering that these devices’ cores are controllers: 

PLCs, gateways with cognitive capabilities that can acquire, aggregate, understand, react to data, 

exchange, and distribute information. 

The meta-edge integrates processing units, typically located on-premises, implemented with high-

performance embedded computing units, edge machine vision systems, and edge servers (e.g. high-

performance CPUs, GPUs, FPGAs, etc.) that are designed to handle compute-intensive tasks, such as 

processing, data analytics, AI-based functions, networking, and data storage.  

This classification is closely related to the distance between the data source and the data processing, 

impacting overall latency. A high-level rough estimation of the communication latency and the distance 

from the data sources are as follows. With micro-edge the latency is below 1millisecond (ms), and the 

distances are from zero to max 15 meters (m). For deep-edge distances are under 1 km and latency below 

2-5 ms, meta-edge shows latencies of under 10 ms and distances under 50 km, and up to 50 km (also) for 

fog computing. MEC concepts are combined with near-edge, with 10-20 ms latency and 100 km distance, 

while far-edge is 20-50ms and 200 km, and cloud and data centers are more than 50 ms and 1000 km. 

  

 Latency Distance 

Micro-edge Below 1ms From 0 cm to 15 m 

Deep-edge Below 2-5 ms Below 1km 

Meta-edge Below 10 ms Below 50 km 

Fog 10-20 ms Up to 50 km 

MEC6 + near-edge 10-20 ms  100 km 

Far-edge 20-50 ms 200 km 

Cloud/data 

centres/HPC 

More than 50 -100 ms 1000 km and beyond 

 

6 Multi-access edge computing (ETSI/ISG) : Multi-access edge computing (MEC) brings technology resources closer 
to the end user. Data is processed and stored at the network’s edge, not at some distant data center, significantly 
reducing latency. 
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Deployments "at the edge" can contribute, thanks to its flexibility, to be adapted to the specific needs, to 

provide more energy-efficient processing solutions by integrating various types of computing 

architectures at the edge (e.g. neuromorphic, energy-efficient microcontrollers, AI processing units), 

reduce data traffic, data storage and the carbon footprint. One way to reduce the energy consumption is 

to know which data and why it is collected, which targets are achieved and to optimize all levels of 

processes, both at hardware and software levels, to achieve those targets, and finally to evaluate what is 

consumed to process the data.  

In general, the edge (in the peripheral of a global network as the Internet) includes compute, storage, and 

networking resources, at different levels as described above, that may be shared by several users and 

applications using various forms of virtualization and abstraction of the resources, including standard APIs 

to support interoperability.  

More specifically, an edge node covers the edge computing, communication, and data analytics 

capabilities that make it smart/intelligent. An edge node is built around the computing units (CPUs, 

GPUs/FPGAs, ASICs platforms, AI accelerators/processing), communication network, storage 

infrastructure and the applications (workloads) that run on it.  

The edge can scale to several nodes, distributed in distinct locations and the location and the identity of 

the access links is essential. In edge computing, all nodes can be dynamic. They are physically separated 

and connected to each other by using wireless/wired connections in topologies such as mesh. The edge 

nodes can be functioning at remote locations and operate semi-autonomously using remote management 

administration tools. 

The edge nodes are optimized based on the energy, connectivity, size, cost, and their computing resources 

are constrained by these parameters. In different application cases, it is required to provide isolation of 

edge computing from data centers in the cloud to limit the cloud domain interference and its impact on 

edge services. 

Finally, the edge computing concept supports a dynamic pool of distributed nodes, using communication 

on partially unreliable network connections while distributing the computing tasks to resource-

constrained nodes across the network. 

2.1.3.2 Positioning Embedded Artificial Intelligence 

 

Even if there will be a lot of applications that will not use AI, this field is currently on top of the hype curve 

and more and more embedded systems will be compatible with AI requirements. We can consider that 

the AI hardware landscape could be segmented into three categories, each defined by the processing 

power and application domains. These categories are Cloud AI, Embedded AI for high-performance needs, 

and Embedded AI for low-power applications. They also reflect the “continuum of computing” and 

computation should be done on all the 3 segments, where it is the most efficient according to a particular 

set of KPI (such a latency, energy cost, privacy preserving, communication bandwidth, global cost, …).  
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Figure 2: Hype Cycle for Emerging Technologies7 

 

We can use the computing efficiency to differentiate the categories, but this is quite subjective and can 

change over time, but here is a classification into 3 clusters. 

1. Cloud AI (~1 to 10 TOPS/W): 

Cloud AI represents the most concentration of AI processing power, leveraging GPUs capable of exceeding 

2000 TOPS (Tera Operations Per Second) and large language models (LLMs) with over 4 billion parameters. 

This category is primarily utilized in data centers and servers, where the focus is on both training and 

inferencing tasks. A system (for example in the Green500 system can reach efficiency up to more than 70 

GFLOPS/W in FP32 and 4 PFLOPS for the FP8 on tensor cores, or roughly 4 TFLOPS/W in FP8). 

 

2. Embedded AI (1 to ~50 TOPS/W): 

Embedded AI in the range of 1 to 100 TOPS/W focuses on bringing powerful AI capabilities closer to the 

source of data generation. This category employs Neural Processing Units (NPUs) with performance 

ranging from 40 to 2000 TOPS  with multiple GB of RRAM and smaller language models (SLMs) with 1 

 

7 2024 from https://www.gartner.com/doc/reprints?id=1-2HV4OPON&ct=240618&st=sb 
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million to 7 billion parameters. These systems are typically embedded in notebooks/PCs (for example, 

Copilot+PC from Microsoft8), smartphones (for example Apple Intelligence9) and will be more and more 

used in automotive, robotics, factory automation, etc. It is also where we found the majority of 

“perceptive AI”, used to directly analyse images, video, sound or signals, and typical AI processing 

methods are using Convolutional Neural Networks (CNNs) or related approaches. 

For example, for automotive ADAS, Embedded AI hardware provides the necessary computational power 

to process sensor data in real-time, enabling advanced features like object detection, lane keeping, and 

adaptive cruise control. In consumer electronics such as notebooks and smartphones, Embedded AI 

enhances user experiences through features like voice recognition and generation, document analysis and 

synthesis, and intelligent photography. Additionally, in networking equipment like GPON and AP routers, 

Edge AI facilitates smarter data management and enhanced security measures. 

3. Deep Embedded AI (>10 TOPS/W): 

This category of Embedded AI is designed for applications requiring high efficiency and lower 

computational power. To reach high efficiency, the hardware is more specialized (ASIC), involving for 

example the use of Compute Near Memory (CNM) or Compute-In-Memory (CIM) architectures, and 

models like Convolutional Neural Networks (CNNs) or Spiking Neural Networks (SNNs) with far fewer than 

4 million parameters. The processing techniques are simpler, not using Transformer based Neural 

Networks, but more CNNs, Bayesian approaches etc. 

The scope of this chapter is on Embedded AI and Deep Embedded AI. 

 

2.1.4 State of the Art 
 

The key issues to the digital world are the availability of affordable computing resources and transfer of 

data to the computing node with an acceptable power budget. Computing systems are morphing from 

classical computers with a screen and a keyboard to smart phones and to deeply embedded systems in 

the fabric of things. This revolution on how we now interact with machines is mainly due to the advance 

in AI, more precisely of machine learning (ML) that allows machines to comprehend the world not only 

on the basis of various signal analysis but also on the level of cognitive sensing (vision and audio). Each 

computing device should be as efficient as possible and decrease the amount of energy used. 

Low-power neural network accelerators will enable sensors to perform online, continuous learning and 

build complex information models of the world they perceive. Neuromorphic technologies such as spiking 

neural networks and compute-in-memory architectures are compelling choices to efficiently process and 

fuse streaming sensory data, especially when combined with event-based sensors. Event-based sensors, 

like the so-called retinomorphic cameras, are becoming extremely important especially in the case of edge 

computing where energy could be a very limited resource. Major issues for edge systems, and even more 

for AI-embedded systems, is energy efficiency and energy management. Implementation of intelligent 

 

8 https://blogs.microsoft.com/blog/2024/05/20/introducing-copilot-pcs/  
9 https://machinelearning.apple.com/research/introducing-apple-foundation-models  

https://blogs.microsoft.com/blog/2024/05/20/introducing-copilot-pcs/
https://machinelearning.apple.com/research/introducing-apple-foundation-models
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power/energy management policies are key for systems where AI techniques are part of processing sensor 

data and power management policies are needed to extend the battery life of the entire system.  

As extracting useful information should happen on the (extreme) edge device, personal data protection 

must be achieved by design, and the amount of data traffic towards the cloud and the edge-cloud can be 

reduced to a minimum. Such intelligent sensors not only recognize low-level features but will be able to 

form higher level concepts as well as require only very little (or no) training. For example, whereas digital 

twins currently need to be hand-crafted and built bit-for-bit, so to speak, tomorrow’s smart sensor 

systems will build digital twins autonomously by aggregating the sensory input that flows into them. 

To achieve intelligent sensors with online learning capabilities, semiconductor technologies alone will not 

suffice. Neuroscience and information theory will continue to discover new ways10 of transforming 

sensory data into knowledge. These theoretical frameworks help model the cortical code and will play an 

important role towards achieving real intelligence at the extreme edge. 

 Compared to the previous SRIA, as explained in the previous part, we can observe two new directions: 

• The recent explosion of AI, and more precisely of Generative AI drove development of new 

solutions for embedded systems (for now mainly PCs and smartphones), which a potential very 

large market growth. 

• RISC-V is coming to various range of products, and especially from ICs from China that support a 

lot a feature for connectivity (security), IOs and accelerators. Most of advanced MCU also have a 

small core, mostly always on, in charge to wake-up the rest of the system in case of event. 

AI accelerator chips for embedded market have traditionally been designed to support convolutional 

neural networks (CNNs), which are particularly effective for image, audio, and signal analysis. CNNs excel 

at recognizing patterns and features within data, making them the backbone of applications such as facial 

recognition, speech recognition, and various forms of real-time data and signal processing11. These tasks 

require significant computational power and efficiency, which dedicated AI chips have been able to 

provide with new and specialized architectures (embedded NPU). Most of current accelerators available 

today in edge computing systems are used and designed for perception applications and further 

developments are required to have further gains in efficiency.  

Generative AI at the edge (mainly for Embedded AI): the rise of (federation of) smaller models 

New deep learning models are introduced at an increasing rate and one of the recent ones, with large 

applications potential, are transformers, which are the basis of LLMs. Based on the attention model12, it 

is a “sequence-to-sequence architecture” that transforms a given sequence of elements into another 

sequence. Initially used for NLP (Natural Language Processing), where it can translate one sequence in a 

first language into another one, or complement the beginning of a text with potential follow-up, it is now 

extended to other domains such as video processing or elaborating a sequence of logical steps for robots. 

It is also a self-supervised approach: for learning it does not need labelled examples, but only part of the 

 

10 Even though our understanding of how the brain computes is still in its infancy, important breakthroughs in 
cortical (column) theory have been achieved in the last decade. 
11 For example, https://greenwaves-technologies.com/  
12 https://arxiv.org/abs/1706.03762  

https://greenwaves-technologies.com/
https://arxiv.org/abs/1706.03762
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sequence, the remaining part being the “ground truth”.  The biggest models, such as GPT3, are based on 

this architecture. GPT3 was in the spotlights in May 2020 because of its potential use in many different 

applications (the context being given by the beginning sequence) such as generating new text, 

summarizing text, translating text, answering to questions and even generating code from specifications. 

This was even amplified by GPT4, and all those capabilities were made visible to the public in November 

2022 with Chat-GPT, which triggered a maximum of hype and expectations. Even if today transformers 

are mainly used for cloud applications, this kind of architecture is rippling down in embedded system. 

Small to medium size (1, 3, 7 to 13 G parameters models) can be executed on single board computers 

such as Jetson Orin nano and even Raspberry PI. Quantization is a very important process to reduce the 

memory footprint of those models and 4-bit LLMs performs rather well. The new GPUs of NVIDIA support 

float8 in order to efficiently implement transformers. Supporting LLMs in a low-power and efficient way 

on edge devices is a new important challenge. However, most of these models are too big to run at the 

edge. 

But we observe a trend in using several smaller specialized generative AI working together which could 

give comparable results than large monolithic LLMs. For example, the concept of Agentic AI,  Mixture of 

Agents (MoA)13, where a set of smaller Large Language Models (LLMs) works collaboratively. Smaller 

specialized LLMs can be trained and fine-tuned for specific tasks or domains. This specialization allows 

each model to become highly efficient and accurate in its particular area of expertise. By dividing the 

workload among these specialized agents14, the system can leverage the strengths of each model, 

achieving a level of performance and accuracy that rivals or even surpasses that of a single, very large 

LLM. This targeted approach not only enhances the precision of the responses but also reduces the 

computational overhead associated with training and running a monolithic model. The MoA framework 

optimizes resource utilization by distributing tasks dynamically based on the specific strengths of each 

agent. This means that instead of overloading a single model with diverse and potentially conflicting 

requirements, the system can route tasks to the most suitable agent. Such an arrangement ensures that 

computational resources are used more efficiently, as each agent processes only the type of data it is best 

equipped to handle, and the other don’t consume processing power, hence energy. Moreover, the MoA 

approach enhances scalability and maintainability and is more suited for edge devices, or a network of 

edge devices. 

 Training and updating a single enormous LLM is a complex and resource-intensive process, often 

requiring extensive computational power and time only available in the cloud or in large data centers. In 

contrast, updating smaller models can be more manageable and less resource-demanding. Additionally, 

smaller models can be incrementally improved or replaced without disrupting the entire system. This 

modularity allows for continuous enhancement and adaptation to new data and tasks, ensuring that the 

system remains current and effective over time. Furthermore, MoA systems inherently offer robustness 

and fault tolerance: with multiple smaller agents, the failure of one model does not cripple the entire 

system. This MoA (or similar) are very suited for Edge AI by distributing the specialized models in different 

(parts of) systems, and having them interconnected (hence the requirement for edge hardware to be have 

connectivity stack integrated, with all security requirements). 

 

13 https://www.together.ai/blog/together-moa  
14 For example, using appraoches like RouteLLM, see https://lmsys.org/blog/2024-07-01-routellm/  

https://www.together.ai/blog/together-moa
https://lmsys.org/blog/2024-07-01-routellm/
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Concerning the training of large foundation models, it is clear that this is only possible now in cloud AI due 

to the very large training dataset and computing power required to train foundation models. However, 

there are at least two other ways to adapt the foundation model to a particular (local) context: fine tuning 

and large token context. Fine-tuning involves taking a pre-trained foundation model and further training 

it on a specific, smaller dataset that reflects the target application’s domain or context. This process 

adjusts a very small proportion of the model's weights (using LoRA or Adapters15) based on the new data, 

allowing it to specialize and perform more accurately in the given local context. This can be done on the 

edge with local data, for example in PC or smartphone which have sufficiently memory for storing the 

training data, RAM for running the fine-tuning process and of course processing power. This can be done 

when the system is idle, e.g. during the night for PCs or smartphone.  

 

Figure 3: This table outlines the approximate memory requirements for training Llama 3.1 models using different techniques, 
from https://huggingface.co/blog/llama31 

Leveraging a large token context refers to the model’s ability to process and understand long sequences 

of text, providing it with a broader context window. This extended context allows the model to capture 

more nuanced dependencies and relationships within the data, improving its comprehension and 

relevance to specific local contexts. By accommodating a larger context, the model can maintain 

coherence and produce more accurate and contextually appropriate outputs over longer spans of text, 

making it particularly useful for applications that require in-depth understanding and continuity, such as 

detailed document summarization or extended conversational AI systems. Together, these methods 

enable foundation models to be effectively adapted and optimized for specialized applications, enhancing 

their utility and performance in specific scenarios and they can be usable (in a near future) at the Edge in 

Embedded AI systems. Enlarging the context mainly implies more memory, as shown in Figure 4. 

 

15 https://github.com/AGI-Edgerunners/LLM-Adapters  

https://github.com/AGI-Edgerunners/LLM-Adapters
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Figure 4: requirements for the KV cache memory of Llama 3.1 model s(FP16), from https://huggingface.co/blog/llama31 

 

Energy efficiency of AI training: 

Training AI models can be very energy demanding. As an example, according to a recent study, the model 

training process for natural-language processing (NLP, that is, the sub-field of AI focused on teaching 

machines to handle human language) could end emitting as much carbon as five cars in their lifetimes16, 
17. However, if the inference of that trained model is executed billions of times (e.g. by billion users' 

smartphones), its carbon footprint could even offset the training one. Another analysis18, published by the 

OpenAI association, unveils a dangerous trend: "since 2012, the amount of compute used in the largest 

AI training runs has been increasing exponentially with a 3.5 month-doubling time (by comparison, 

Moore's law had a 2-years doubling period)". These studies reveal that the need for computing power 

(and associated power consumption) for training AI models is dramatically widening. Consequently, the 

AI training processes need to turn greener and more energy efficient. 

 

16 https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-can-emit-as-much-carbon-
as-five-cars-in-their-lifetimes/  
17 However, technology and algorithms improved a lot over time, and training a similar model (Bloom) 3 years later 
required 21 times less CO2 emissions. 
18 https://openai.com/index/ai-and-compute/  

https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/
https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/
https://openai.com/index/ai-and-compute/


DRAFT

 

 

Figure 5: Increase of performance for AI 

 

In fact, we can say that it is the available performance in operation per Watt of AI accelerators (GPUs) 

that drive the evolution of AI based on neural networks, including generative AI: the Figure 5 shows that 

GPT-4, launched on March 14, 2023, was only possible because the cost of the energy to train it in 2022 

was acceptable and it would not have -been possible to train it before. the Figure 5 also shows that GPU 

performances increased by 3 decades in 8 years, both thanks to new architecture, reduced data type 

(from FP16 to FP4) and smaller technology nodes. In this same period of time, the energy reduction was 

350x.  
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Figure 6:Evolution of the size of the most advanced deep learning networks (from https://arxiv.org/abs/2202.05924 )  

For a given use-case, the search for the optimal solution should meet multi-objective trade-offs among 

accuracy of the trained model, its latency, safety, security, and the overall energy cost of the associated 

solution. The latter means not only the energy consumed during the inference phase but also considering 

the frequency of use of the inference model and the energy needed to train it.  

In addition, novel learning paradigms such as transfer learning, federated learning, self-supervised 

learning, online/continual/incremental learning, local and context adaptation, etc., should be preferred 

not only to increase the effectiveness of the inference models but also as an attempt to decrease the 

energy cost of the learning scheme. Indeed, these schemes avoid retraining models from scratch all the 

times or reduce the number and size of the model parameters to transmit back and forth during the 

distributed training phase. 

It is also important to be able to support LLMs at the edge, in a low-cost and low-energy way, to benefit 

from their features (natural language processing, multimodality, few shot learning, etc..). Applications 

using transformers (such as LLMs) can run with 4 bit – or less - for storing each parameter, allowing to 

reduce the amount of memory required to use them in inference mode. 

Although significant efforts have been focused in the past to enable ANN-based inference on less powerful 

computing integrated circuits with lower memory size, today, a considerable challenge to overcome is 

that non-trivial DL-based inference requires significantly more than the 0.5-1 MB of SRAM, that is the 

typical memory size integrated on top of microcontroller devices. Several approaches and methodologies 

to artificially reduce the size of a DL model exist, such as quantizing the neural weights and biases or 

pruning the network layers. These approaches are fundamental also to reduce the power consumption of 

the inference devices, but clearly, they cannot represent the definitive solution of the future.  
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We witness great development activity of computing systems explicitly supporting novel AI-oriented use 

cases, spanning different implementations, from chips to modules and systems. Moreover, as depicted in 

the following figure, it covers large ranges of performance and power, from high-end servers to ultra-low 

power IoT devices. 

 

 

Figure 7: Landscape of AI chips according to their peak power consumption and peak performance19. 

To efficiently support new AI-related applications, for both, the server and the client on the edge side, 

new accelerators need to be developed. For example, DL does not usually need a 32/64/128-bit floating 

point for its learning phase, but rather variable precision including dedicated formats such as bfloats. 

However, a close connection between the compute and storage parts are required (Neural Networks are 

an ideal "compute in memory" approach). Storage also needs to be adapted to support AI requirements 

(specific data accesses, co-location compute and storage), memory hierarchy, local vs. cloud storage. This 

is particularly important for LLMs which (still) have a large number of parameters (few billions) to be 

efficient. Quantization into 4 to 2 bits, new memories and clever architectures are required for their 

efficient execution at the edge. 

Similarly, at the edge side, accelerators for AI applications will particularly require real-time inference, in 

view to reduce the power consumption. For DL applications, arithmetic operations are simple (mainly 

multiply-accumulate) but they are done on data sets with a very large set of data and the data access is 

therefore challenging. In addition, clever data processing schemes are required to reuse data in the case 

 

19 AI Accelerator Survey and Trends, Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Siddharth 
Samsi, Jeremy Kepner, October 2022 https://arxiv.org/abs/2210.04055  
 

https://arxiv.org/abs/2210.04055
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of convolutional neural networks or in systems with shared weights. Computing and storage are deeply 

intertwined. And of course, all the accelerators should fit efficiently with more conventional systems. 

Reducing the size of the neural networks and the precision of computation is key to allow complex deep 

neural networks to run on embedded devices. This can be achieved either by pruning the topology of the 

networks, and/or by reducing the number of bits storing values of weight and neuron values. These 

processes can be done during the learning phase, or just after a full precision learning phase, or can be 

done (with less performance) independently of the learning phase (example: post-training quantization). 

The pruning principle is to eliminate nodes that have a low contribution to the final result. Quantization 

consists either in decreasing the precision of the representation (from float32 to float16 or even float8, 

as supported by the NVIDIA GPUs mainly for transformer networks), or to change the representation from 

float to integers. For the inference phase, current techniques allow to use 8-bit representations with a 

minimal loss of performances, and sometimes to reduce the number of bits further, with an acceptable 

reduction of performance or small increase of the size of the network (LLMs still seem to have a good 

performance with a 4-bit quantization). Most major developments environments (TensorFlow Lite20, 

Aidge21, etc.) support post-training quantization, and the Tiny ML community is actively using it. 

Supporting better tools and algorithms to reduce size and computational complexity of Deep Neural 

Networks is of paramount importance for allowing efficient AI applications to be executed at the edge.  

Fixing and optimizing some parts of the processing (for example feature extraction for CNNs) leads to 

specialized architectures with very high-performance, as exemplified in the ANDANTE project.  

 

20 https://www.tensorflow.org/lite/performance/post_training_quantization  
21 https://projects.eclipse.org/projects/technology.aidge  

https://www.tensorflow.org/lite/performance/post_training_quantization
https://projects.eclipse.org/projects/technology.aidge
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Figure 8: Results of various quantization methods versus Top-1 ImageNet accuracy 

 

 

2.1.4.1 Impact of AI and embedded intelligence in sustainable development  

Recently, the attention to the identification of sustainable computing solutions in modern digitalization 

processes has significantly increased. Climate changes and an initiative like the European Green Deal22  

are generating more sensitivity to sustainability topics, highlighting the need to always consider the 

technology impact on our planet, which has a delicate equilibrium with limited natural resources23. The 

computing approaches available today, as cloud computing, are in the list of the technologies that could 

potentially lead to unsustainable impacts. A study24 has clearly confirmed the importance of edge 

computing for sustainability but, at the same time, highlighted the necessity of increasing the emphasis 

on sustainability, remarking that “research and development should include sustainability concerns in 

 

22 https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en 
23 Nardi, B., Tomlinson, B., Patterson, D.J., Chen, J., Pargman, D., Raghavan, B., Penzenstadler, B.: Computing within 
limits. Commun. ACM. 61, 86–93 (2018) 
24 Hamm, Andrea & Willner, Alexander & Schieferdecker, Ina. (2020). Edge Computing: A Comprehensive Survey of 
Current Initiatives and a Roadmap for a Sustainable Edge Computing Development. 10.30844/wi_2020_g1-hamm. 
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their work routine” and that “sustainable developments generally receive too little attention within the 

framework of edge computing”. The study identifies three sustainability dimensions (societal, ecological, 

and economical) and proposes a roadmap for sustainable edge computing development where the three 

dimensions are addressed in terms of security/privacy, real-time aspects, embedded intelligence and 

management capabilities. 

AI and particularly embedded intelligence, with its ubiquity and its high integration level having the 

capability “to disappear” in the environment (ambient intelligence), is significantly influencing many 

aspects of our daily life, our society, the environment, the organizations in which we work, etc. AI is 

already impacting several heterogeneous and disparate sectors, such as companies’ productivity25, 

environmental areas like nature resources and biodiversity preservation26, society in terms gender 

discrimination and inclusion27 28, smarter transportation systems29, etc. just to mention a few examples. 

The adoption of AI in these sectors is expected to generate both positive and negative effects on the 

sustainability of AI itself, of the solutions based on AI and on their users30 31. It is difficult to extensively 

assess these effects and there is not, to date, a comprehensive analysis of their impact on sustainability. 

A study32 has tried to fill this gap, analyzing AI from the perspective of 17 Sustainable Development Goals 

(SDGs) and 169 targets internationally agreed in the 2030 Agenda for Sustainable Development33. From 

the study it emerges that AI can enable the accomplishment of 134 targets, but it may also inhibit 59 

targets in the areas of society, education, health care, green energy production, sustainable cities, and 

communities. 

From a technological perspective AI sustainability depends, at first instance, on the availability of new 

hardware and software technologies. From the application perspective, automotive, computing and 

healthcare are propelling the large demand of AI semiconductor components and, depending on the 

application domains, of components for embedded intelligence and edge AI. This is well illustrated by car 

factories being on hold because of the shortage of electronic components. Research and industry 

organizations are trying to provide new technologies that lead to sustainable solutions redefining 

 

25 Acemoglu, D. & Restrepo, P. Artificial Intelligence, Automation, and Work. NBER Working Paper No. 24196 
(National Bureau of Economic Research, 2018). https://futurium.ec.europa.eu/en/connect-university/events/next-
computing-paradigm-hipeac-2024  
26 Norouzzadeh, M. S. et al. Automatically identifying, counting, and describing wild animals in camera-trap images 
with deep learning. Proc. Natl Acad. Sci. USA 115, E5716–E5725 (2018). 
 
27 Bolukbasi, T., Chang, K.-W., Zou, J., Saligrama, V. & Kalai, A. Man is to computer programmer as woman is to 
homemaker? Debiasing word embeddings. Adv. Neural Inf. Process. Syst. 29, 4349–4357 (2016). 
28 Tegmark, M. Life 3.0: Being Human in the Age of Artificial Intelligence (Random House Audio Publishing Group, 
2017)  
29 Adeli, H. & Jiang, X. Intelligent Infrastructure: Neural Networks, Wavelets, and Chaos Theory for Intelligent 
Transportation Systems and Smart Structures (CRC Press, 2008). 
30 Jean, N. et al. Combining satellite imagery and machine learning to predict poverty. Science (80-.) 353, 790–794 
(2016) 
31 Courtland, R. Bias detectives: the researchers striving to make algorithms fair. Nature 558, 357–360 (2018). 
32 Vinuesa, R., Azizpour, H., Leite, I. et al. The role of artificial intelligence in achieving the Sustainable Development 
Goals. Nat Commun 11, 233 (2020). 
33 UN General Assembly (UNGA). A/RES/70/1Transforming our world: the 2030 Agenda for Sustainable 
Development. Resolut 25, 1–35 (2015). 

https://futurium.ec.europa.eu/en/connect-university/events/next-computing-paradigm-hipeac-2024
https://futurium.ec.europa.eu/en/connect-university/events/next-computing-paradigm-hipeac-2024
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traditional processor architectures and memory structure. We already saw that computing near, or in-

memory, can lead to parallel and high-efficient processing to ensure sustainability.  

The second important component of AI that impacts sustainability concerns software and involves the 

engineering tools adopted to design and develop AI algorithms, frameworks, and applications. The 

majority of AI software and engineering tools adopt an open-source approach to ensure performance, 

lower development costs, time-to-market, more innovative solutions, higher design quality and software 

engineering sustainability. However, the entire European community should contribute and share the 

engineering efforts at reducing costs, improving the quality and variety of the results, increasing the 

security and robustness of the designs, supporting certification, etc.   

The report on “Recommendations and roadmap for European sovereignty on open-source hardware, 

software and RISC-V Technologies”34 discusses these aspects in more details. 

Eventually, open-source initiatives (being so numerous, heterogeneous, and adopting different 

technologies) provide a rich set of potential solutions, allowing to select the most sustainable one 

depending on the vertical application. At the same time, open source is a strong attractor for applications 

developers as it gathers their efforts around the same kind of solutions for given use cases, democratizes 

those solutions and speeds up their development.  However, some initiatives should be developed, at 

European level, to create a common framework to easily develop different types of AI architectures (CNN, 

ANN, SNN, LLM, etc.). This initiative should follow the examples of GAMAM (Google, Amazon, Meta, 

Apple, Microsoft). GAMAM have greatly understood its value and elaborated business models in line with 

open source, representing a sustainable development approach to support their frameworks35. It should 

be noted that open-source hardware should not only cover the processors and accelerators, but also all 

the required infrastructure IPs to create embedded architectures. It should be ensured that all IPs are 

interoperable and well documented, are delivered with a verification suite, and remain maintained 

constantly to keep up with errata from the field and to incorporate newer requirements. The availability 

of automated SoC composition solutions, allowing to build embedded architectures design from IP 

libraries in a turnkey fashion, is also a desired feature to quickly transform innovation into PoC (Proof of 

Concept) and to bring productivity gains and shorter time-to-market for industrial projects.  

The extended GAMAM and the BATX36 also have large in-house databases required for the training and 

the computing facilities. In addition, almost all of them are developing their chips for DL (e.g. Google with 

its line of TPUs) or made announcements that they will. The US and Chinese governments have also 

started initiatives in this field to ensure that they will remain prominent players in the field, and it is a 

domain of competition. 

Sustainability through open technologies extends also to open data, rules engines37 and libraries. The 

publication of open data and datasets is facilitating the work of researchers and developers for ML and 

DL, with the existence of numerous images, audio and text databases that are used to train the models 

 

34 https://digital-strategy.ec.europa.eu/en/library/recommendations-and-roadmap-european-sovereignty-open-
source-hardware-software-and-risc-v  
35 DL networks with Tensorflow at Google, PyTorch / Caffe at Facebook, CNTK at Microsoft, Watson at IBM, 
DSSTNE at Amazon 
36 BATX is an acronym standing for Baidu, Alibaba, Tencent, and Xiaomi, the four biggest tech firms in China 
37 Clips, Drools distributed by red Hat, DTRules by Java, Gandalf on PH 

https://digital-strategy.ec.europa.eu/en/library/recommendations-and-roadmap-european-sovereignty-open-source-hardware-software-and-risc-v
https://digital-strategy.ec.europa.eu/en/library/recommendations-and-roadmap-european-sovereignty-open-source-hardware-software-and-risc-v
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and become benchmarks38. Reusable open-source libraries39 allow to solve recurrent development 

problems, hiding the technical details and simplifying the access to AI technologies for developers and 

SMEs, maintaining high-quality results, reducing time to market and costs. 

The Tiny ML community (https://www.tinyml.org/ ) is bringing Deep Learning to microcontrollers with 

limited resources and at ultra-low energy budget. The MLPerf allows to benchmark devices on similar 

applications (https://github.com/mlcommons/tiny ), because it is nearly impossible to compare 

performances on figures given by chips providers. Other Open source initiatives are gearing towards 

helping the adaptation of AI algorithms to embedded systems, such as the Eclipse Aidge40 , supported by 

the EU founded project Neurokit2E41. 

From the application perspective, impact of AI and embedded intelligence on sustainable development 

could be important. By integrating advanced technologies into systems and processes, AI and embedded 

intelligence enhance efficiency, reduce resource consumption, and promote sustainable practices, 

ultimately contributing to the achievement of the United Nations' Sustainable Development Goals (SDGs). 

AI-powered systems could be used to optimizing energy consumption and improving the efficiency of 

renewable energy sources. For example, smart grids utilize AI to balance supply and demand dynamically, 

integrating renewable energy sources like solar and wind more effectively. Predictive analytics enable 

better forecasting of energy production and consumption patterns, reducing waste and enhancing the 

reliability of renewable energy. Additionally, AI-driven energy management systems in buildings and 

industrial facilities can significantly reduce energy usage by optimizing heating, cooling, and lighting based 

on real-time data. 

Finally, embedded intelligence in consumer products promotes sustainability by enabling smarter usage 

and longer lifespans. For example, smart appliances can optimize their operations to reduce energy 

consumption, while predictive maintenance in industrial machinery can prevent breakdowns and extend 

equipment life, reducing the need for new resources and lowering overall environmental impact. 

 

2.1.4.2 Market perspectives 

Several market studies, although they don't give the same values, show the huge market perspectives for 

AI use in the next years.  

According to ABI Research, it is expected that 1.2 billion devices capable of on-device AI inference have 

been shipped in 2023, with 70% of them coming from mobile devices and wearables. The market size for 

ASICs responsible for edge inference is expected to reach US$4.3 billion by 2024 including embedded 

architectures with integrated AI chipset, discrete ASICs, and hardware accelerators.  

The market for semiconductors powering inference systems will likely remain fragmented because 

potential use cases (e.g. facial recognition, robotics, factory automation, autonomous driving, and 

 

38 A few examples are ImageNet (14 million images in open data), MNIST or WordNet (English linguistic basis) 
39 Nvidia Rapids, Amazon Comprehend, Google NLU Libraries  
40 https://projects.eclipse.org/projects/technology.aidge  
41 https://www.neurokit2e.eu/  

https://www.tinyml.org/
https://github.com/mlcommons/tiny
https://projects.eclipse.org/projects/technology.aidge
https://www.neurokit2e.eu/
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surveillance) will require tailored solutions. In comparison, training systems will be primarily based on 

traditional CPUs, GPUs, FPGAs infrastructures and ASICs. 

According to McKinsey, it is expected by 2025 that AI-related semiconductors could account for almost 

20 percent of all demand, which would translate into about $65 billion in revenue with opportunities 

emerging at both data centers and the edge. 

According to a recent study, the global AI chip market was estimated to USD 9.29 billion in 2019 and it is 

expected to grow to USD 253.30 billion by 2030, with a CAGR of 35.0% from 2020-2030. 

 

 

Figure 9: Market of high-end chips from https://www.yolegroup.com/product/report/status-of-the-processor-industry-2023/ 

There is a large increase in value of the market in the field of chip for IA, mainly for server/datacenters, 

but the market for Edge IA is also forecasted to have a large increase in the next years. The exact figures 

vary according to the market forecast company, but there is a common agreement for the large growth.  

https://www.yolegroup.com/product/report/status-of-the-processor-industry-2023/
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Figure 10: Market forecast of AI chips, from https://market.us/report/ai-chip-market/ 

 

 

Figure 11: Edge AI market growth 2023-2033, from https://market.us/report/edge-ai-chips-market/ 

https://market.us/report/ai-chip-market/
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However, there is now an increasing trend towards AI chips that can execute generative AI models at the 

edge, and this trend is clearly increasing in 2024. These models can generate new content, predict 

complex sequences, and enhance decision-making processes in more sophisticated ways. Initially, the 

integration of these capabilities is seen in the PC and smartphone markets (Copilot+PC, with currently 

Snapdragon X series of chip, smartphones with Snapdragon 8 Gen 3 able to support generative AI models 

with up to 10 billion parameters42, or the Mediatek Dimensity 930043 ) , where there is a growing demand 

for advanced AI applications that require both high performance and low latency. For instance, new 

smartphones and PCs are being equipped with AI chips capable of running generative models locally, 

enabling features such as real-time language translation, advanced virtual assistants, and enhanced 

creative tools like automated photo and video or text editing44. 

European semiconductor companies are not in this market of chipset for smartphone or PCs, but it is 

expected that, with the progress in the size reduction and specialization of large Foundation Models, 

generative AI at the edge will be used in the near (?) future in more and mode domains, including the 

ones primarily targeted by European chip manufacturers. We also observe emerging tentative (not very 

successful yet) to develop new devices and use cases in the domain of edge devices (often connected to 

the cloud) such as Rabbit R1, Ai-pin, etc. 

Another recent trend is that the RISC-V instruction set based chips are also developing rapidly, especially 

in China or Taiwan. For example, the Chinese company Sophgo delivers a cheap microcontroller with 2 

RISC-V (one running at 1GHz, the other at 700 MHz) and a 1 TOPS (8bit) NPU, allowing to build systems 

running both Linux and a RTOS for less than 5$. On the cheap side, the CH32V003 is a 32-bit RISC-V 

microcontroller running at 48 MHz with 16kB of flash and 2 kB or SRAM which is sold at retail price (not 

for large quantities) below 10 cents. On the other side of the spectrum, various Chinese companies are 

announcing high performance RISC-V chips for servers, for example Alibaba with its C93045. US companies 

are also present in this market (SiFive, Esperanto, Meta – MTIA chip, etc). European companies are also 

involved in developing or using RISC-V cores (Codasip, Greenwaves, Bosch, Infineon, NXP, Nordic 

semiconductors, …). Research firm Semico projects a staggering 73.6 percent annual growth in the 

number of chips incorporating RISC-V technology, with a forecast of 25 billion AI chips by 2027 generating 

a revenue of US $291 billion. 

 

2.1.4.3 AI components vendors  

In the next few years, the hardware is serving as a differentiator in AI, and AI-related components will 

constitute a significant portion of future demand for different applications. 

Qualcomm has launched a generation of Snapdragon processors, with NPU, allowing to run models un to 

10 billion parameters in smartphones (such as Samsung Galaxy S24) or in PCs (Copilot+PCs), MediaTek 

 

42 https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-8-series-mobile-
platforms/snapdragon-8-gen-3-mobile-platform#Overview 
43 https://www.mediatek.com/blog/whats-new-in-the-mediatek-dimensity-9300 
44 https://www.apple.com/apple-intelligence/  
45 https://www.tomshardware.com/pc-components/cpus/alibaba-claims-it-will-launch-a-server-grade-risc-v-
processor-this-year 
 

https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-8-gen-3-mobile-platform#Overview
https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-8-gen-3-mobile-platform#Overview
https://www.mediatek.com/blog/whats-new-in-the-mediatek-dimensity-9300
https://www.apple.com/apple-intelligence/
https://www.tomshardware.com/pc-components/cpus/alibaba-claims-it-will-launch-a-server-grade-risc-v-processor-this-year
https://www.tomshardware.com/pc-components/cpus/alibaba-claims-it-will-launch-a-server-grade-risc-v-processor-this-year
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also has chips allowing to run generative AI on smartphones and Google, with its Tensor G4 (for the pixel 

9) also introduces chips able to run small models in consumer grade (embedded) devices. Apple also 

introduces generative AI in their devices, starting from the iPhone 15 pro and device equipped with the 

M series of processors. Of course, the requirement is to have powerful NPUs (Copilot+PCs require NPU of 

40 TOPs and 16 GB of RAM), but also a large amount of RAM able to host the model and the OS.  

Huawei and MediaTek incorporate their embedded architectures into IoT gateways and home 

entertainment, and Xilinx finds its niche in machine vision through its Versal ACAP SoC. NVIDIA has 

advanced the developments based on the GPU architecture, NVIDIA Jetson AGX platform, a high 

performance SoC that features GPU, ARM-based CPU, DL accelerators and image signal processors. NXP 

and STMicroelectronics have begun adding Al HW accelerators and enablement SW to several of their 

microprocessors and microcontrollers.  

ARM is developing core for machine learning applications and used in combination with the Ethos-U8546 

or Ethos-N78 AI accelerator. Both are designed for resource-constrained environments. The new ARM’s 

cores are designed for customized extensions and for ultra-low power machine learning.  

 

 

Figure 12: - Example of architecture of a modern SoC (from Paolo Azzoni, see also Chapter 1.3) / Arm’s 
Cortex-M55 and Ethos-U55 Tandem. Provide processing power for gesture recognition, biometrics, and 
speech recognition applications (Source: Arm). 

Companies like Google, Gyrfalcon, Mythic, NXP, STMicroelectronics and Syntiant are developing custom 

silicon for the edge. As an example, Google was releasing Edge TPU, a custom processor to run TensorFlow 

Lite models on edge devices. NVIDIA is releasing the Jetson Orin Nano range of products, allowing to 

perform up to 40 TOPS of sparce neural networks within a 15W power range47. 

 

 

46 https://newsroom.arm.com/news/iot-reference-design-platform-2024  
47 https://developer.nvidia.com/blog/solving-entry-level-edge-ai-challenges-with-nvidia-jetson-orin-nano/  

https://newsroom.arm.com/news/iot-reference-design-platform-2024
https://developer.nvidia.com/blog/solving-entry-level-edge-ai-challenges-with-nvidia-jetson-orin-nano/
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Open-source hardware, championed by RISC-V, will bring forth a new generation of open-source chipsets 

designed for specific ML and DL applications at the edge. French start-up GreenWaves is one of European 

companies using RISC-V cores to target the ultra-low power machine learning space. Its devices, GAP8 and 

GAP9, use 8- and 9-core compute clusters, the custom extensions give its cores a 3.6x improvement in 

energy consumption compared to unmodified RISC-V cores. 

The development of the neuromorphic architectures is accelerated as the global neuromorphic AI 

semiconductor market size is expected to grow. 

The major European semiconductor companies are already active and competitive in the domain of AI at 

the edge: 

• Infineon is well positioned to fully realize AI’s potential in different tech domains. By adding AI to 

its sensors, e.g. utilizing its PSOC microcontrollers and its Modus toolbox, Infineon opens the 

doors to a range of application fields in edge computing and IoT. First, Predictive Maintenance: 

Infineon’s sensor-based condition monitoring makes IoT work. The solutions detect anomalies in 

heating, ventilation, and air conditioning (HVAC) equipment as well as motors, fans, drives, 

compressors, and refrigeration. They help to reduce breakdowns, maintenance costs and extend 

the lifetime of technical equipment. Second, Smart Homes and Buildings: Infineon’s solutions 

make buildings smart on all levels with AI-enabled technologies, e.g. building’s domains such as 

HVAC, lighting or access control become smarter with presence detection, air quality monitoring, 

default detection and many other use cases. Infineon’s portfolio of sensors, microcontrollers, 

actuators, and connectivity solutions enables buildings to collect meaningful data, create insights 

and take better decisions to optimize its operations according to its occupants’ needs. Third, 

Health and Wearables: the next generation health and wellness technology is enabled to utilize 

sophisticated AI at the edge and is empowered with sensor, compute, security, connectivity, and 

power management solutions, forming the basis for health-monitoring algorithms in lifestyle and 

medical wearable devices supplying highest precision sensing of altitude, location, vital signs, and 

sound while also enabling lowest power consumption.  Fourth, Automotive: AI is enabled for 

innovative areas such as eMobility, automated driving and vehicle motion. The latest 

microcontroller generation AURIX™ TC4x with its Parallel Processing Unit (PPU) provides 

affordable embedded AI and safety for the future connected, eco-friendly vehicle. 

 

• NXP, a semiconductor manufacturer with strong European roots, has begun adding Al HW 

accelerators and enablement SW to several of their microprocessors and microcontrollers 

targeting the automotive, consumer, health, and industrial market. For automotive applications, 

embedded AI systems process data coming from the onboard cameras and other sensors to 

detect and track traffic signs, road users and other important cues. In the consumer space the 

rising demand for voice interfaces led to ultra-efficient implementations of keyword spotters, 

whereas in the health sector AI is used to efficiently process data in hearing aids and 

smartwatches. The industrial market calls for efficient AI implementations for visual inspection of 

goods, early onset fault detection in moving machinery and a wide range of customer specific 

applications. These diverse requirements are met by pairing custom accelerators, multipurpose 
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and efficient CPUs with a flexible SW tooling to support engineers implementing their system 

solution. 

 

• STMicroelectronics integrated edge AI as one of the main pillars of its product strategy plan. By 

combining AI-ready features in its hardware products to a comprehensive ecosystem of software 

and tools, ST ambitions to overcome the uphill challenge of AI: opening technology access to all 

and for a broad range of applications. STMicroelectronics delivers a stack of Hardware and 

Software specifically designed to  enable Neural Networks and Machine Learning inferences in an 

extremely low energy environment. Most recently, STMicroelectronics has started to bring to 

market MCUs and MPUs with Neural accelerators, able to handle workloads that were not 

conceivable in an edge device a few years ago. These devices rely on NPUs (Neural Processing 

Units) that execute Neural Network tasks up to 100 times faster than in traditional high end MCUs. 

The STM32MP2 MPU has been made available in the second quarter of 2024, it will be followed 

by a full family of STM32 MCUs leveraging STMicroelectronics home grown NPU technology, 

Neural Art. The first MCU leveraging this technology is already in the hands of tens of clients for 

workloads such as visual events recognition, people and objects recognition, all executed at the 

edge in the device. On the software side, to adapt algorithms to small CPU and memory footprints, 

STMicroelectronics has delivered the ST Edge AI Suite a toolset specifically designed to address all 

the needs of embedded developers from ideation with a rich Model zoo, to datalogging to 

optimization for the embedded world of pre-created Neural Networks to creation of predictive 

maintenance algorithms. Two tools are particularly interesting: 1) STM32Cube.ai, an optimizer 

tool which enables a drastic reduction of the power consumption while maintaining the accuracy 

of the prediction. 2) NanoEdge AI studio, an Auto-ML software for edge-AI, that automatically 

finds and configures the best AI library for STM32 microcontroller or smart MEMS that contain 

ST’s embedded Intelligent Sensor Processing Unit (ISPU). NanoEdge AI algorithms are widely used 

in projects such arc-fault or technical equipment failure detection and extends the lifetime of 

industrial machines. 

 

2.1.5 Applications breakthroughs  
 

2.1.5.1 Example of AI application ranging from deep-edge to cloud 

One example of an application that can leverage all three categories of AI hardware simultaneously in a 

true example of “continuum of computing” is an advanced autonomous driving system in smart cities. 

In the cloud, massive amounts of data from numerous autonomous vehicles, traffic cameras, and other 

city infrastructure are aggregated and used to train large-scale AI models. Data centers equipped with 

GPUs handle the complex tasks of training models with large language models (LLMs). These models 

analyze patterns, improve decision-making algorithms, and enhance predictive capabilities. They also 

ensure that the autonomous driving algorithms continuously learn and adapt from real-world data. This 

centralized processing allows for the development of highly sophisticated models that can then be 

deployed to vehicles for local inferencing, ensuring they are always operating with the latest intelligence. 
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In the vehicles themselves, high-performance NPUs handle real-time inferencing tasks based on smaller 

models. These processors power the Advanced Driver Assistance Systems (ADAS) within each vehicle, 

enabling real-time perception, decision-making, and control. This includes tasks such as object detection, 

lane keeping, obstacle avoidance, and adaptive cruise control. This on-vehicle processing ensures that the 

car can react instantly to its environment without the latency that would be introduced by relying solely 

on cloud-based computations. They also ensure safety by working without a permanent connection to the 

cloud, which cannot be always guaranteed. 

Within the vehicle, low-power AI hardware is used for continuous monitoring and processing of data from 

various sensors. These sensors include in-cabin cameras and audio systems, external cameras, LIDAR, 

radar, and ultrasonic sensors. The low-power AI systems process data for applications like driver behavior 

monitoring, passenger safety features, and environmental awareness (e.g., detecting nearby pedestrians 

or cyclists). By using low-power AI hardware, the vehicle can efficiently manage sensor data without 

draining the battery, which is crucial for electric vehicles. This also ensures continuous monitoring and 

safety features remain active without interruption. 

The integration of these three AI hardware categories creates a robust autonomous driving ecosystem. 

Cloud AI ensures that the overall traffic management in the city/countryside is well managed, that the 

“intelligence” of the autonomous driving system is continuously improving through extensive data 

analysis and model training. High-Performance Embedded AI within the vehicle handles immediate, 

critical decision-making and control functions, allowing the car to operate safely and effectively in real 

time. Low-Power Embedded AI maintains constant environmental and internal monitoring, ensuring that 

all sensor data is processed efficiently, and that the vehicle can respond to changing conditions without 

excessive power consumption, and can prevent failures by continuous monitoring of the various 

functionalities of the vehicle. 

It seems clear that advanced AI capabilities can enhance autonomous driving systems, in-car 

entertainment, and real-time vehicle diagnostics. Generative AI can be used to predict traffic patterns, 

generate detailed maps, and simulate various driving scenarios to improve safety and efficiency, and could 

improve the interface between the car and the user. 

2.1.5.2 Other application domains 

What we observe in automotive domain can also be applied to other domains of Edge computing and 

embedded Artificial Intelligence, such as systems for factories, for homes, etc. As we have seen, there is 

more and more convergence between edge computing and embedded (generative) AI, but still a lot of 

edge applications will be without AI (for now?), so AI support/accelerators are required only in few 

systems. 

Another significant market is the healthcare sector. AI chips capable of executing advanced AI models can 

be used in medical devices for helping for diagnostics (with continuous monitoring, and forecasting 

potential problems), personalized treatment planning, and real-time monitoring of patient health. These 

applications require the ability to process and analyze data locally, providing immediate and accurate 

insights without relying on cloud-based solutions that may introduce latency or privacy concerns. 
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Important examples are its contribution in the recovery from the Covid-19 pandemic as well as its 

potential to ensure the required resilience in future crises48.   

Industrial automation and robotics also stand to benefit from this technology. Generative AI can enable 

more advanced predictive maintenance, optimize manufacturing processes, and allow robots to learn and 

adapt to new tasks more efficiently. By embedding AI chips with generative capabilities, industries can 

improve productivity, reduce downtime, and enhance operational flexibility. We see the first impressive 

results of using generative IA in robotics, not only for interfacing in natural ways with human, but also for 

scene analysis and action planning.  

In Internet of Things (IoT), smart home devices, wearable technology, and even agriculture technology 

can leverage generative AI for a variety of innovative applications. These include creating more intelligent 

home automation systems, developing wearables that provide more personalized health and fitness 

insights, and implementing smart farming techniques that can predict crop yields and optimize resource 

use. 

While AI accelerated chips have traditionally focused on supporting CNNs for image, audio, and signal 

analysis, the rise of generative AI capabilities is driving a new wave of AI chips designed for edge 

computing. This evolution is starting in the PC and smartphone markets but will spread across a range of 

embedded markets, including automotive, healthcare, industrial automation, robotics, and IoT, 

significantly broadening the scope and impact of edge AI technologies. Therefore, it is important that 

Europe continue to be recognized as a player in the market of embedded MCU and MPU by being 

prepared to introduce generative AI accelerators in their products, even cheap ones. 

 

2.1.6 Major challenges 
 

The convergence between edge computing and embedded generative AI is becoming increasingly evident, 

but many edge applications currently operate without AI integration. Consequently, AI support and 

accelerators are only required in a limited number of systems at present. Most of the accelerators 

available today in edge computing systems are designed for perception applications, such as image and 

audio processing, which require significant advancements to achieve further efficiency gains. As 

technology progresses, it is expected that the size reduction and specialization of large foundation models 

will make generative AI at the edge feasible in a growing number of domains. This trend includes areas 

primarily targeted by European chip manufacturers, signaling a shift towards broader AI integration in 

various applications. 

Europe must maintain its status as a key player in the embedded MCU (Microcontroller Unit) and MPU 

(Microprocessor Unit) markets by preparing to introduce generative AI accelerators in their products, 

even in more affordable devices. These systems should also be ready for software upgradability, and 

connectivity allowing modularity and collaborative performances. This readiness will ensure that 

European manufacturers can meet the future demand for edge AI capabilities. Additionally, the rapid 

development of RISC-V instruction set-based chips presents a significant opportunity for innovation and 

 

48 https://www.eenewsembedded.com/news/nxp-developing-neural-networks-identify-covid-19 
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competitiveness in the global semiconductor market. Embracing these advancements will be crucial for 

Europe to stay at the forefront of the evolving edge computing landscape, where the integration of 

generative AI and specialized accelerators will become increasingly commonplace. 

Europe should also be ready for the smooth integration of the devices into the computing continuum. 

This will not only require extra feature in the embedded devices (such as connectivity, covered in the 

connectivity chapter, security, covered in the security chapter) but also a global software stack certainly 

based on As a Service approach, the development of smart orchestrators and a global architecture view 

at system level. As such, the evolution towards the computing continuum is not a major challenge of this 

chapter, but is more a global challenge. We will only list here some aspects that need to be further 

developed: 

 

Four Major Challenges have been identified for Europe to be an important player in the further 

development of computing systems, especially in the field of embedded AI architectures and edge 

computing: 

1. Increasing Energy Efficiency 

2. Managing the Increasing Complexity of Systems 

3. Supporting the Increasing Lifespan of Devices and Systems 

4. Ensuring European Sustainability  

 

2.1.6.1 Major Challenge 1: Increasing the energy efficiency of computing systems and embedded 

intelligence 

2.1.6.1.1 State of the art 

Increasing energy efficiency is the results of progress at multiple levels: 

Technology level: 

At technology level (FinFet, FDSOI, silicon nanowires or nanosheets), technologies are pushing the limits 

to be ultra-low power. Technologies related to advanced integration and packaging have also recently 

emerged (2.5D, chiplets, active interposers, etc.) that open innovative design possibilities, particularly for 

what concerns tighter sensor-compute and memory-compute integration.   

Device level: 

At device level, several type of architectures are currently developed worldwide. The list is moving from the well-

known CPU to some more and more dedicated accelerators integrated in Embedded architectures (GPU, NPU, DPU, 

TPU, XPU, etc.) providing accelerated data processing and management capabilities, which are implemented going 

from fully digital to mixed or full analog solutions:  
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• Fully digital solutions have addressed the needs of emerging application loads such as AI/DL 

workloads using a combination of parallel computing (e.g. SMP49 and GPU) and accelerated 

hardware primitives (such as systolic arrays), often combined in heterogeneous Embedded 

architectures. Low-bit-precision (8-bit integer, 8 or 4 bits floating representations, … ) 

computation as well as sparsity-aware acceleration have been shown as effective strategies 

to minimize the energy consumption per each elementary operation in regular AI/DL 

inference workloads; on the other hand, many challenges remain in terms of hardware 

capable of opportunistically exploiting the characteristics of more irregular mixed-precision 

networks. Some applications also require further development due to their need for more 

flexibility and precision in numerical representation (32- or 16-bit floating point), which puts 

a limit to the amount of hardware efficiency that can be achieved on the compute side. 

• Avoiding moving data: this is crucial because the access energy of any off-chip memory is 

currently 10-100x more expensive than access to on-chip memory. Emerging non-volatile 

memory technologies such as MRAM, with asymmetric read/write energy cost, could provide 

a potential solution to relieve this issue, by means of their greater density at the same 

technology node. Near-Memory Computing (NMC) and In-Memory Computing (IMC) 

techniques move part of the computation near or inside memory, respectively, further 

offsetting this problem. While IMC in particular is extremely promising, careful optimization 

at the system level is required to really take advantage of the theoretical peak efficiency 

potential. Figure 13 shows that moving data requires order of magnitude more energy than 

processing them (an operation on 64 bit data requires about 20pJ in 28nm technology, while 

getting the same 64 bit data from external DRAM takes 16 nJ – without the energy of the 

external DRAM). 

 

 

49 Symmetric multiprocessing or shared-memory multiprocessing (SMP) involves a multiprocessor computer 
hardware and software architecture where two or more identical processors are connected to a single, shared 
main memory, from https://en.wikipedia.org/wiki/Symmetric_multiprocessing . 
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 Figure 13:- Energy for compute and data movement. This explains the order of magnitude of the problem of data movement, 
and this problem is still relevant in all technology nodes. 

This figure shows that in a modern system, large parts of the energy are dissipated in moving 

data from one place to another. For this reason, new architectures are required, such as 

computing in or near memory, neuromorphic architectures (also where the physics of the NVM - 

PCM, CBRAM, MRAM, OXRAM, ReRAM, FeFET, etc. - technology can be used also to compute) 

and lower bit-count processing are of primary importance. Not only the memories itself, e.g. 

bitcells, are needed but the complementing libraries and IP for IMC or NMC as well.  
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System level: 

• micro-edge computing near sensors (i.e. integrating processing inside or very close to the sensors 

or into local control) will allow embedded architectures to operate in the range of 10 mW 

(milliwatt) to 100 mW with an estimated energy efficiency in the order of 100s of GOPs/Watt up 

to a few TOPs/Watt in the next 5 years. This could be negligible compared to the energy 

consumption of the sensor (for example, a MEMS microphone can consume a few mW). On top, 

the device itself can go in standby or in sleep mode when not used, and the connectivity must not 

be permanent. Devices currently deployed on the edge rarely process data 24/7 like data centers: 

to minimize global energy, a key requirement for future edge Embedded architectures is to 

combine high performance “nominal” operating modes with lower-voltage high compute 

efficiency modes and, most importantly, with ultra-low-power sleep states, consuming well below 
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1 mW in fully state-retentive sleep, and less than 1-10 µW in deep sleep. The possibility to leave 

embedded architectures in an ultra-low power state for most of the time has a significant impact 

on the global energy consumed. The possibility to orchestrate and manage edge devices becomes 

fundamental from this perspective and should be supported by design. On the contrary, data 

servers are currently always on even if they are loaded only at 60% of their computing capability.  

• Unified (or shared) memory, which allows CPUs and GPUs (or NPUs) to share a common memory 

pool, is gaining traction in first for high end systems such a Mx series of systems from Apple. This 

approach not only streamlines memory management but also provides flexibility by enabling the 

allocation of this unified memory pool to Neural Processing Units (NPUs) as needed. This is 

particularly advantageous for handling the diverse and dynamic workloads typical of AI 

applications and reduce the amount of energy required to move data between different parts of 

the system. 

• Maximum utilization and energy proportionality: Energy efficiency in cloud servers rely on the 

principle that silicon is utilized at its maximum efficiency, ideally operating at 100% load. This 

maximizes the computational throughput per watt of power consumed, optimizing the energy 

efficiency of the server infrastructure. In cloud environments, high utilization rates are easier to 

achieve because workloads from multiple users can be aggregated and balanced across a vast 

number of servers. This dynamic allocation of resources ensures that the hardware is consistently 

operating near its capacity, minimizing idle periods. Considering processing at the edge, achieving 

a clear net benefit in terms of energy efficiency presents additional challenges. Unlike centralized 

cloud servers, edge devices often face fluctuating and unpredictable workloads. These devices 

must be capable of maintaining high efficiency across a wide range of utilization levels, not just at 

peak performance. To accomplish this, edge hardware needs to be designed with adaptive power 

management features that allow it to scale power usage dynamically in response to varying 

workloads. This means the hardware should be as efficient at low workloads as it is at 100% 

utilization, ensuring that energy is not wasted during idle or low-demand periods. Energy 

proportionality aims to scale computing power according to the computational demand at any 

given moment. This concept is crucial for modern computing environments, which must handle a 

diverse range of workloads, from the intensive processing needs of self-driving vehicles to the 

minimal computational requirements of IoT devices. The ability to dynamically adapt power usage 

ensures efficiency and effectiveness across this spectrum of applications. The scalability of 

processing power is fundamental to achieving energy proportionality. In high-demand 

scenarios, such as those faced by self-driving cars, the computational power must scale up to 

handle complex algorithms for navigation, sensor fusion, and real-time decision-making. 

Conversely, IoT devices often require minimal computational power, as they are designed to 

perform specific, limited functions with a few lines of code. This wide range of computational 

needs presents a significant challenge because the requirements and hardware for each 

application are vastly different. 

Data level: 

At data level, memory hierarchies will have to be designed considering the data reuse characteristics and 

access patterns of algorithms, which strongly impact load and store access rate and hence, the energy 

necessary to access each memory in the hierarchy and avoiding to duplicate data. For example (but not 

only), weights and activations in a Deep Neural Network have very different access patterns and can be 
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deployed to entirely separate hierarchies exploiting different combinations of external Flash, DRAM, non-

volatile on-chip memory (MRAM, FRAM, etc.) and SRAM.   

The right data type should be also supported to perform correct (or as correct as acceptable) computation 

with the minimum number of bits and if possible, in integer (the floating-point representation as specified 

in IEEE 754 is very costly to implement, especially with the particular cases). AI based on transformers and 

generative AI could use a far simpler representation for the inference phase, such a bfloat16 (which could 

also be used for training) or even float 8 or 4 and even in some cases, using less than 4 bits integer 

representation.  It is obvious that storing and computing a weight coded with INT4 is about an order of 

magnitude more efficient than using a Float32 representation.  

Tools level: 

At tools level, HW/SW co-design of system and their associated algorithms are mandatory to minimize 

the data moves and optimally exploit hardware resources, particularly if accelerators are available, and 

thus optimize the power consumption. New AI-based HW/SW platforms with increased dependability, 

optimized for increased energy efficiency, low cost, compactness and providing balanced mechanisms 

between performance and interoperability should be further developed to support the integration into 

various applications across the industrial sectors of AI and other accelerators50. 

2.1.6.1.2 Key focus areas 

Therefore, there are several key axes to further develop in order to increase energy efficiency of 

computing and AI systems: 

Processing Data Locally and reducing data movements: 

Increasing the energy efficiency of computing systems in general is a multifaceted challenge that requires 

innovations across various domains, including hardware, software, and data management. Indeed, power 

consumption should not only be seen at the level of the device, but at the levels composing the full 

technology stack. One effective strategy is processing data locally where it is created, which reduces the 

energy consumption associated with data transmission to centralized locations, and also reducing latency 

required in real-time applications, such as self-driving vehicle or other industrial commands. This localized 

data processing not only enhances energy efficiency but also helps in securing the data by keeping it within 

the local environment, thus ensuring privacy. Additionally, the co-design of architectures, hardware, 

software, and topologies can significantly optimize system performance and energy usage. This is closely 

linked to the concept of "local-first" software, as articulated by M. Kleppmann, A. Wiggins, P. Van 

Hardenberg, and M. McGranaghan in their 2019 paper, which presents a paradigm shift that emphasizes 

user autonomy and data ownership, even in the era of pervasive cloud computing. Local-first software is 

designed to ensure that users maintain control over their data by storing it primarily on their local devices, 

thus enabling full functionality even without an active internet connection. In the local-first paradigm, the 

software architecture is designed to prioritize local operations, using Conflict-free Replicated Data Types 

(CRDTs) and other synchronization mechanisms to manage concurrent data updates and ensure 

consistency across distributed systems. This approach aligns with the capabilities of modern edge 

hardware, which can handle complex data structures and algorithms locally, reducing the reliance on 

 

50 An example is the platform developed in the project Neurokit2E, see https://www.neurokit2e.eu/ 
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centralized cloud infrastructures. As shown in the beginning of this chapter, this concept is clearly involved 

in Apple Intelligence and in HarmonyOS51.  

Co-Design of Algorithms, Hardware, Software: 

The co-design of algorithms, hardware, software represents a holistic approach to optimizing system 

performance and energy usage. This integrated design process can help to identify and eliminate 

bottlenecks, streamline operations, and reduce overall energy consumption. It is also crucial to have a co-

optimization of the software and hardware to explore more advanced trade-offs. At tools level, HW/SW 

co-design of system and their associated algorithms are mandatory to minimize the data moves and 

optimally exploit hardware resources, particularly if accelerators are available, and thus optimize the 

power consumption. 

Efficient Management of storage resources:  

In the landscape of edge AI, the efficient management of memory resources is becoming increasingly 

critical to guarantee both a sustainable energy consumption profile and the required performances. 

Local execution of smaller language models (SLMs) often encounters bottlenecks primarily at the memory 

level. This is particularly evident with the need for cheap and efficient memory solutions able not only to 

store but allowing to be used directly for computation, avoiding the transfer of the weight of the model 

from flash to standard DRAM – as done today – which is expansive. Research is only starting in this field52. 

Memory technology itself is advancing swiftly, with smartwatches now boasting up to 8GB of memory, 

showing the trend towards more substantial memory capacities in compact devices. 

Moreover, the cost of memory remains a crucial factor for deploying generative AI at the edge. Efficient 

memory usage is imperative to keep costs manageable, especially as generative models require 

substantial memory for optimal performance. Innovations in compressing weight (quantization from 

FP16 to FP4 or even INT4 or lower), pruning the network or advances in memory technology are 

therefore essential to minimize RAM wastage and enhance the feasibility of deploying advanced AI 

capabilities on edge devices. In most NPUs, the weights have to be transferred from non-volatile memory 

to faster RAM, leading to energy waste and duplication of storage resources. This involves strategic 

allocation (between Flash, DRAM or other kind of memories) and utilization of memory to ensure that AI 

tasks are handled efficiently without unnecessary data copy (which consumes energy and requires more 

resources). 

Concept of Unified Memory: 

The concept of unified memory, where a common memory pool is shared between the CPU and GPU/NPU, 

offers significant advantages for energy efficiency. This approach allows for more flexible and dynamic 

allocation of memory resources, ensuring that the system can adapt to varying workloads. Unified 

memory can also help to reduce data duplication and transfer overheads, leading to more efficient 

processing. 

 

51 Some concepts are also developed in the open source Oniro project (https://oniroproject.org/ ), also based on 
OpenHarmony ( https://gitee.com/openharmony ). 
52 See https://arxiv.org/abs/2312.11514 for example 

https://oniroproject.org/
https://gitee.com/openharmony
https://arxiv.org/abs/2312.11514
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Innovations in Memory Technology: 

Innovations in compressing weights, pruning neural networks, and advances in memory technology are 

essential for increasing energy efficiency. Techniques such as weight compression and network pruning 

reduce the amount of data that needs to be processed and stored, thereby lowering energy consumption. 

Advances in memory technology, such as the development of more efficient and high-capacity non-

volatile memory solutions, that can be used directly for computing, further contribute to this goal. 

Energy Proportionality: 

Energy proportionality is a critical principle for hardware design, ensuring that devices are as efficient at 

low workloads as they are at 100% utilization. Addressing the scalability challenge involves designing 

systems that can efficiently adjust their power usage without compromising performance. This means 

developing hardware that is capable of scaling its power consumption dynamically and software that can 

efficiently distribute computational loads. The goal is to achieve a balance where each device, whether a 

powerful autonomous vehicle or a simple IoT sensor, operates at optimal energy efficiency.  

Ultra-Low Standby Current: 

Maintaining an ultra-low standby current is vital for devices that spend significant amounts of time in idle 

or low-power states, waiting to perform tasks triggered by specific events or intervals. This is particularly 

important for battery-operated and portable devices, which may include sensors, mobile devices, and IoT 

appliances, where energy efficiency is a key concern for these devices that spend significant amounts of 

time in standby mode. Achieving ultra-low standby current requires special power management 

techniques, such as power gating and dynamic voltage scaling, which can shut down non-essential 

components and reduce power supply to idle parts of the circuit without compromising the device’s 

readiness to wake up and perform tasks promptly.  

Leveraging Physical Phenomena for Computation: 

One innovative approach to reducing energy consumption in computing involves leveraging physical 

phenomena to perform computations, effectively using the inherent properties of physical systems to 

solve complex problems. This method relies on the principle that certain physical processes can naturally 

execute the same types of equations and operations that we aim to solve computationally. This is the case 

for neuromorphic computing.  This term covers various kind or realization, using sparce information 

coding method of “spikes”, using RRAMs (resistive RAMs) to make essentially the weighted sum which is 

the basis of artificial neural network-based AI, including LLMs. Ohm’s law can be used to make the (analog) 

product, and either Kirchhoff's law or adding charges in a capacitor used for the summation. The value of 

RRAM can be also locally modified, allowing to implement some training algorithm very efficiently. 

However, despite their promising potential, neuromorphic computing technologies are still largely in the 

research phase. Scalability to large networks, dispersion of properties, interfacing with other systems, etc. 

still need to improve. Extensive efforts are needed to refine these systems and validate their 

effectiveness in real-world, product-ready solutions.  
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2.1.6.2 Major Challenge 2: Managing the increasing complexity of systems and embedded intelligence 

2.1.6.2.1 State of the art 

Managing the increasing complexity of systems is another crucial aspect. It is driven by the diversity and 

dependencies of its components as well as by the requested functions and performance, affecting 

concepts, architectures and operation at all levels of the system hierarchy. Therefore, the reference 

architectures for future AI-based systems need to provide modular and scalable solutions that support 

interoperability and interfaces among platforms that can collaborate, exchange information and share 

computing resources to allow the functional evolution of the silicon-born embedded systems, ready for 

the computing continuum evolution. 

Still, it is observed that the strategical backbone technologies to realize such new architectures are not 

available. These strategical backbone technologies include smart and scalable electronic components and 

systems, the AI accelerator and control hardware and software, the security engines, and the connectivity 

technologies.  

To achieve this, balanced mechanisms must be developed to ensure performance while maintaining 

interoperability between diverse systems. AI techniques play a vital role in complexity management by 

enabling self-optimizing, self-reconfiguring, and self-managing systems. These self-X capabilities allow 

systems to adapt dynamically to changing conditions, enhancing their reliability and resilience but they 

are not available to the required extent.  

The current SoCs are reaching a very high complexity by integrating a lot of functions and different 

accelerators on the same die. A decomposition of the SoCs into chiplets for more flexibility and scalability 

(e.g., mix and match) may help dealing with the complexity but for that an ecosystem which facilitates the 

design and also provides plug and play capable, interoperable chiplets is requried. 

A holistic end-to-end approach is necessary to manage the increasing complexity of systems, to remain 

competitive and to continuously innovate the European electronic components and systems ecosystem.  

This approach involves technologies described in other chapters such as AI for system conception 

described in methods and tools chapter. Besides theses, here is a short list of themes are need to be 

promoted in order to reduce global complexity of systems in general, and systems supporting AI 

techniques in particular: 

• Tools and techniques leveraging AI to help in the management of complexity, e.g. tools to adapt 

LLMs to edge / embedded targets are required. For example, the development of AI based 

HW/SW for multi-tasking and providing techniques to adapt the trained model to produce close 

or expected outputs when provided with a different but related set of data. The new solutions 

must provide dynamic transfer learning, by assuring the transfer of training instance, feature 

representation, parameters, and relational knowledge from the existing trained AI model to a new 

one that addresses the new target task. They should also ensure hyperparameter tuning for 

automated machine learning scenarios, etc. Furthermore, environments for modeling how the 

various parts interact together should be considered since topic is still a challenge, since having 

accurate digital twins of complex systems with the right level of abstraction for the various uses 

(conception, runtime optimization, etc.) is still an unsolved challenge.  

• New design and architecture concepts including HW-SW codesign with corresponding HW/SW 

platforms for AI born embedded systems should be promoted to facilitate trust by providing the 
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dependable design techniques, that enable the end-to-end AI systems to be scalable, make 

correct decisions in a repetitive manner, provide mechanisms to be transparent, explainable, 

interpretable, and able to achieve interpretable results and embed features for AI model’s and 

interfaces' interpretability. Linked to the previous point, infrastructure for the secure and safe 

execution of AI should be created.  

• Enabling factors to manage the complexity of the continuum of computing are the use and 

development of standardized APIs for hardware and software tool chains, methods and 

interoperability across different system layers like sensors, gateways, on-premise servers and 

edge processing units. Additionally, interoperability concepts for AI edge-based platforms for data 

tagging, training, deployment, and analysis should be supported, allowing the development of 

distributed edge computing architecture with AI models running on distributed devices, servers, 

or gateways away from data centers or cloud servers. This implies scalable and hardware agnostic 

AI models capable of delivering comparable performance on different computing platforms, (e.g. 

Intel, AMD or ARM, Risc-V architectures) and seamless and secure integration at HW/SW 

embedded systems with the AI models integrated in the SW/HW and APIs to support configurable 

data integrated with enterprise authentication technologies through standards-based methods. 

• Deterministic behaviors, low latency and reliable communications are also important for other 

vertical applications, such as connected cars, where edge computing and AI represent “the” 

enabling technology, independently from the sustainability aspects. The evolution of 5G is 

strongly dependent on edge computing and multi-access edge computing (MEC) developments. 

In this chapter, five Key Focus Areas have been identified to tackle this complexity challenge: 

• Complexity Management Utilizing AI  

• Decomposition of Complex SoCs into Chiplets and Interposers  

• Ensuring Programmability and Interoperability  

• Combining Processing Devices to Work Together  

• Modeling Interactions Among System Components  

2.1.6.2.2 Key focus areas 

Complexity management utilizing AI  

In the domain of edge AI, the concept of a Mixture of Agents (MoA) or Agentic AI, where a set of smaller 

Large Language Models (LLMs) called agents works collaboratively, presents a promising approach to 

managing complexity more effectively than relying on very large “universal” foundation models. This 

strategy involves deploying multiple specialized models, each trained to handle specific tasks or domains, 

and orchestrating their cooperation to achieve comprehensive AI functionalities. By distributing the 

workload across several specialized agents, the system can maintain high levels of efficiency and accuracy, 

tailored to the particularities of different tasks. The MoA framework enhances scalability and flexibility, 

enabling more precise and context-aware responses by leveraging the strengths of each specialized 

model. This approach also allows for tailored optimization, enhancing the performance of AI applications 

across diverse domains. Additionally, it reduces the computational and memory overhead typically 

associated with very large models (only the relevant agents are active, not all of them), making it more 

feasible to implement advanced AI capabilities on edge devices with limited resources. Consequently, the 

MoA paradigm not only simplifies the management of AI complexity but also optimizes performance and 
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resource utilization in edge computing environments, paving the way for more responsive and efficient AI 

applications. 

Decomposition of Complex SoCs into Chiplets and Interposers 

The decomposition of complex SoCs into chiplets and interposers is an emerging strategy to manage 

system complexity. This approach involves breaking down a monolithic SoC into smaller, modular 

components (chiplets) that are interconnected using interposers. This architecture allows for greater 

flexibility in design and manufacturing, enabling more efficient scaling and customization of systems, e.g. 

adaptation to domains/applications. Additionally, it facilitates better management of thermal and power 

characteristics, improving overall system performance and it may help to optimize cost. By adopting this 

decomposition approach featuring an ecosystem which includes interoperable chiplets, we can more 

effectively address the challenges posed by the increasing complexity of systems. However, for chiplets 

and interposer ecosystems to really emerge, an agreed standard for interconnect (such as UCIe) will be 

required, together with physical specifications allowing interoperability between providers. 

Ensuring Programmability and Interoperability  

To handle the increasing complexity of systems, it is essential to ensure programmability and 

interoperability for example using techniques and adherence to standards that originate from the web 

and cloud computing (but not necessarily involving the cloud). Technologies such as containers, 

orchestration, and WebAssembly (WASM) maintain high flexibility and adaptability and enable seamless 

integration and operation across different platforms managing the diversity and dynamic range of modern 

computing environments. These tools allow developers to manage and update systems more efficiently, 

ensuring that various components can communicate and function together effectively while developer’s 

productivity can be helped by generative AI (chapter “Embedded Software” of this SRIA), e.g., for the exact 

syntax of the API for driving a particular function, or even generating templates to use a part of the 

hardware.  

Combining Processing Devices to Work Together 

The combination of various processing devices working together is another key focus area for managing 

system complexity. By combining CPUs, GPUs, NPUs, and other specialized processors systems can 

distribute tasks according to the strengths of each device. The combination may be either locally 

(integration at chip level, at the package level using for example chiplets or across distributed chips) or as 

separate components of a system, like in a car, or distributed on physically separated systems, each part 

having a special task to do, thus separating the concerns and helping the management of the complexity 

by splitting it explicitly. This collaborative approach ensures optimal performance and energy efficiency, 

as each processor type can handle specific aspects of the workload more effectively. Coordinating these 

devices requires sophisticated management and scheduling techniques, but it leads to more robust and 

scalable systems. Together with interoperability, the ability of devices to work together is the foundation 

of the computing continuum approach. 

Modeling Interactions Among System Components 

Modeling the interactions among various parts of a system remains a significant challenge in managing 

complexity. Understanding how different components interact, communicate, and influence each other 

is critical for optimizing system performance and reliability. Advanced modeling techniques and 

simulation tools are necessary to accurately represent these interactions and predict system behavior 
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under different conditions. By improving our ability to model these interactions, we can better design and 

manage complex systems, ensuring they operate smoothly and efficiently. 

 

2.1.6.3 Major Challenge 3: Supporting the increasing lifespan of devices and systems and embedded 

intelligence  

2.1.6.3.1 State of the art 

 

With the power of embedded AI, we can now unleash the self-X concept which didn’t took off in the past. 

We can now design HW/SW techniques and architectures that can dynamically monitor their behavior, 

predict default (predictive maintenance), allowing devices to self-optimize, reconfigure and self-manage 

the resource demands (e.g. memory management, power consumption, AI model selection, etc…). This 

will have a direct effect in increasing the lifetime of devices and increasing their up-time. 

Supporting the increasing lifespan of devices and systems can mainly be based on three main principles: 

- Upgradability 

- Modularity 

- Reuse 

By extension, this means that devices and systems have to increase their scalability and interoperability. 

Upgradability 

It requires hardware that can accommodate for example software upgrades, ensuring that devices remain 

functional and up to date over extended periods. This is the drive for approaches such as Software 

Defined Vehicle.  

The first level of lifetime extension is clearly the upgrade to avoid replacing an object but instead 

improving its features and performance through either hardware or software update. This concept is not 

new as it is already applied in several industrial domains for dozens of years.  

Hardware requirements for edge processing devices that support software upgrades must address several 

critical factors to ensure that these devices remain functional and up to date over extended periods. The 

hardware must have sufficient computational power and memory to handle the evolving complexity of 

software applications. Storage capacity must be flexible and expandable, allowing for the installation of 

future updates and new applications without compromising performance. The devices must also 

incorporate robust connectivity options, such as advanced wireless protocols and multiple I/O ports, to 

ensure seamless integration with new peripherals and communication technologies that may emerge over 

time. This has an initial cost because the hardware is perhaps over dimensioned for the exact initial 

requirements but is compensated for the user by its potential increased lifetime.  

Secondly, hardware for edge processing devices must be compatible with various operating systems, RTOS 

and software ecosystems, providing the flexibility needed to adapt to different applications and use cases 

over time. This compatibility ensures that the devices can support a wide range of software upgrades and 

maintain interoperability with other systems. On the smartphone level, some companies (Google, 

Samsung, are guaranteeing that their device will be able to support software upgrade for 7 years). This is 
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an important point that should also happen in the other domains of edge computing. But new disruptive 

innovations (like generative IA) can invalidate this long lifetime because of new drastic hardware 

requirements (mainly memory and requirement of a NPU for embedded generative IA). 

Modularity 

Enhancing interoperability and modularity allows different generations of devices to work together, 

extending their usability and reducing electronic waste. It would lead to systems which are more eco-

conceived and with an augmented sustainability. The hardware should be designed with modularity in 

mind, enabling easy replacement or upgrading of individual components. This implies a long-lasting chip 

to chip communication protocol between units (like I2C, SPI, PCI-e, USB, Ethernet, MIPI, AXI, etc.). 

Modularity at the level of chiplets is not yet here (adding/removing/upgrading chiplets).  This modular 

approach not only extends the device's operational life by allowing for incremental hardware 

improvements but also reduces electronic waste and the overall cost of ownership.  

Interoperability, modularity, scalability, virtualization, upgradability are well-known in embedded systems 

and are already widely applied. But they are brand new in AI and nearly non-existent in edge AI. On top, 

self-x (learning/training, configuration or reconfiguration, adaptation, etc.) are very promising but still 

under research or low level of development. Federative learning and prediction on the fly will certainly 

take a large place in future edge AI systems where many similar equipment collect data (Smartphone, 

electrical vehicles, etc.) and could be improved and refreshed continuously.  

Reuse 

The last aspect of increasing lifetime is to reuse a system in an application framework less demanding in 

terms of performance, power consumption, safety, etc. Developing the concept of a second life for 

components further contributes to sustainability by repurposing older hardware for new applications. 

Having hardware compatible with standard protocols (such as the one used for the web or cloud) could 

improve to find a new purpose for the hardware.  

 

2.1.6.3.2 Key focus areas 

 

Ensuring Long-Term Functionality and Up-to-Date Operation 

A fundamental aspect of supporting the increasing lifespan of devices is ensuring that they remain 

functional and up to date over extended periods. This involves not only maintaining their operational 

capabilities but also providing ongoing support for software updates and new features. By keeping devices 

updated with the latest advancements and security patches, manufacturers can extend their usability and 

relevance, thereby maximizing their value to users and reducing electronic waste. This may incur over-

specification to be able to be future proof. 

• Dynamic reconfiguration and Self-X techs 

Intelligent reconfigurable concepts are an essential key technology for increasing the re-use and 

service life of hardware and software components. Such modular solutions on system level 

require the consideration of different quality or development stages of sensors, software, or AI 

solutions. If the resulting uncertainties (measurements, predictions, estimates by virtual sensors, 
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etc.) are considered in networked control concepts, the interoperability of agents/objects of 

different generations can be designed in an optimal way. 

➢ Dynamic reconfiguration: a critical feature of the AI circuits is to dynamically change their 

functions in real-time to match the computing needs of the software, AI algorithms and 

the data available, and create software-defined AI circuits and virtualise AI functions on 

different computing platforms. The use of reconfigurable computing technology for IoT 

devices with AI capabilities allows hardware architecture and functions to change with 

software providing scalability, flexibility, high performance, and low power consumption 

for the hardware. The reconfigurable computing architectures, integrated into AI-based 

circuits can support several AI algorithms (e.g. convolutional neural network (CNN), fully 

connected neural network, recursive neural network (RNN), etc.) and increase the 

accuracy, performance and energy efficiency of the algorithms that are integrated as part 

of software-defined functions. 

➢ Realizing self-X (adaptation, reconfiguration, etc.): for embedded systems self-

adaptation, self-reconfiguration has an enormous potential in many applications. Usually 

in self-reorganizing systems the major issue is how to self-reorganise while preserving the 

key parameters of a system (performance, power consumption, real time constraints, 

etc.). For any system, there is an operating area which is defined in the multi-dimensional 

operating parameter space and coherent with the requirements. Of course, very often 

the real operating conditions are not always covering the whole operating domain for 

which the system was initially designed. Thanks to AI, when some malfunctioning parts 

are identified it could be possible to decide, relying on AI and the data accumulated during 

system operation, if it affects the behaviors of the system regarding its real operating 

conditions. If this is not the case, it could be considered that the system can continue to 

work, with maybe some limitations, but which are not vital regarding normal operation. 

It would then extend its lifetime “in place”. The second case is to better understand the 

degraded part of a system and then its new operating space. This can be used to decide 

how it could be integrated in another application making sure that the new operating 

space of the new part is compatible with the operating requirements of the new hosting 

system.  

➢ Self-learning techniques are promising. Prediction on Natural Language Understanding 

(NLU) on the fly or keyboard typing, predictive maintenance on mechanical systems (e.g. 

motors) are more and more studied. Many domains can benefit of the AI in mobility, 

smart building, and communication infrastructure.  LLMs shows interesting properties in 

this field, such as few-shot learning. 

 

• Monitoring the devices and systems health 

Dynamic reconfiguration and Self-X Techs also need data to be as efficient as possible. It 

means that monitoring of devices and systems health are necessary to acquire those data.  

Several techniques exist. 

o Distributed monitoring: continuous monitoring and diagnosis also play a crucial role for 

the optimization of product lifetime. Where a large amount of data is collected during 

daily life operation (e.g. usage, environment, sensor data), big data analysis techniques 
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can be used to predictively manipulate the operational strategy, e.g. to extend service 

life. Similarly, an increase in power efficiency can be achieved by adjusting the calibration 

in individual agents. For example, consider a fuel cell electric vehicle where the operation 

strategy decisively determines durability and service life. Distributed monitoring collects 

data from various interconnected agents in real-time (e.g. a truck platoon, an aircraft 

swarm, a smart electricity distribution network, a fleet of electric vehicles) and uses these 

data to draw conclusions about the state of the overall system (e.g. the state of health or 

state of function). This allows to detect shifting behavior or faulty conditions in the 

systems and to even isolate them by attributing causes to changes in individual agents in 

the network or even ageing of individual objects and components. Such detection should 

be accomplished by analyzing the continuous data stream that is available in the network 

of agents. A statistical or model-based comparison of the individual objects with each 

other provides additional insights. Thus, for example, early failures of individual systems 

could be predicted in advance. This monitoring should also cover the performance of the 

semiconductor devices themselves, especially to characterize and adjust to ageing and 

environmental effects and adjust operations accordingly. 

o Distributed predictive optimization is possible, whenever information about future events 

in a complex system is available. Examples are load predictions in networked traffic 

control or demand forecasts in smart energy supply networks. In automation, a concept 

dual to control is monitoring and state observation, leading to safety-aware and 

reconfigurable automation systems. Naturally, all these concepts, as they concern 

complex distributed systems, must rely on the availability of vast data, which is commonly 

associated with the term big data. Note that in distributed systems the information 

content of big data is mostly processed, condensed, and evaluated locally thus relieving 

both communication and computational infrastructure. 

o The other area of lifetime extension is how AI could identify very low signal in a noisy data 

environment. In the case of predictive maintenance for instance it is difficult for complex 

machinery to identify a potential failing part early in advance. The more complex the 

machinery, less possible is to have a complete analytic view of the system which would 

allow for simulation and thus identify potential problems in advance. Thanks to AI and 

collecting large datasets it is possible to extract some very complex patterns which could 

allow very early identification of parts with a potential problem. AI could not only identify 

these parts but also give some advice regarding when an exchange of a part is needed 

before failure, and then help in maintenance task planning. 

 

• Artificial Intelligence challenges 

Secure software upgradability is necessary in nearly all systems now and hardware should be able 

to support future updates. AI introduces additional constraints compared to previous systems. 

Multiplicity of AI approaches (Machine learning, DL, semantic, symbolic, etc.), multiplicity of 

neural network architectures based on a huge diversity of neuron types (CNN, RNN, LLMs, etc.), 

potential complete reconfiguration of neural networks for a same system (linked to a same use 

case) with a retraining phase based on an adapted set of data make upgradability much more 

complex. This this why HW/SW, related stacks, tools, data sets compatible with the edge AI 
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system must be developed in synergy. HW/SW plasticity is necessary whatever the AI background 

principle of each system is, to make them as much as possible upgradable and interoperable and 

to extend the system lifetime. HW virtualization will help to achieve this, as well as 

standardization. The key point is that lifespan extensions, like power management, are 

requirements which must be considered from day one of the design of the system. It is impossible 

to introduce them near the end without a strong rework. 

One challenge for the AI edge model is upgradability of the firmware and new learning/training 

algorithms for edge devices. This includes the updates over-the-air and the device management 

of the updating of AI/ML algorithms based on the training and retraining of the networks (e.g. 

neural networks, etc.) that for IoT devices at the edge is very much distributed and is adapted to 

the various devices. The challenge of the AI edge inference model is to gather data for training to 

refine the inference model as there is no continuous feedback loop for providing this data. The 

related security questions regarding model confidentiality, data privacy etc. need to be addressed 

specifically for such fleets of devices.  

The novelty with AI systems is to upgrade while preserving and guaranteeing the same level of 

safety and performance. For previous systems based on conventional algorithmic approaches, the 

behavior of the system could be evaluated offline in validating the upgrade with a predefined data 

set representative enough for the operating conditions, knowing that, more than the data 

themselves, the way they are processed is important. In the case of AI, things are completely 

different, as the way data are processed is not typically immediately understandable, but what is 

key are the data set itself and the results it produces. In these conditions it is important to have 

frameworks where people could reasonably validate their modification, whether it is hardware or 

software, in order to guarantee the adequate level of performance and safety, especially for 

systems which are human-life-critical. Another upgrade-related challenge is that of designing 

systems with a sufficient degree of architectural heterogeneity to cope with the performance 

demands of AI and machine learning algorithms, but at the same time to be flexible enough to 

adapt to the fast-moving constraints of AI algorithms. Whereas the design of a new Embedded 

architecture or electronic device, even of moderate complexity, takes typically 1-3 years, AI 

models such as Deep Neural Networks are outdated in just months by new networks. Often, new 

AI models employ different algorithmic strategies from older ones, outdating fixed-function 

hardware accelerators and necessitating the design of hardware whose functionality can be 

updated.    

Designing with Modularity and Extensibility in Mind 

To achieve long-term functionality, devices need to be designed with modularity and extensibility as core 

principles. Modularity allows to extend the functionality of a chip for example by externally adding 

another support chip. For this to be practically usable, that means that a specific chip to chip interface 

should be added and internally connected to ensure this modularity at board/system level. This design 

philosophy supports easier maintenance and enables incremental improvements, which can significantly 

extend the device's lifespan. Extensibility ensures that the device can adapt to new technologies and 

requirements over time at system level, adding extra features with new supporting chips. This seems at 

the cost of integration and performance, but new techniques could be developed that overcome most of 
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the disadvantages. For example, Compression Attached Memory Module (CAMM)53 still allows to replace 

the memories in a system like a PC, while the recent trend is to integrate memory directly on a (passive) 

interposer, thus preventing any memory upgrade. 

• Advancing Modularity at the Chiplet Level 

While the concept of modularity is well-established at board and system level, achieving it at the level 

of chiplets is an emerging challenge that has not yet been fully realized. Chiplet-based architectures 

involve breaking down a monolithic System on Chip (SoC) into smaller, interconnected modules 

(chiplets) that can be individually upgraded or replaced. This approach promises greater flexibility, 

improved scalability, and easier integration of new technologies. However, the industry is still in the 

early stages of developing standardized, interoperable chiplet designs. Advancing this modularity at 

the chiplet level is crucial for enabling devices to support prolonged lifespans.  

• Virtual Modularity 

Virtual Modularity refers to the dynamic integration and seamless interaction between multiple 

devices within an interconnected ecosystem, enabling them to function as a unified system. This 

concept allows different hardware components and devices to pool their resources and capabilities, 

creating a flexible, scalable environment where services and tasks can be effortlessly transferred or 

shared across the network. As a result, users experience a cohesive, uninterrupted operation, 

regardless of which device they are using, as the underlying system intelligently manages and 

allocates resources to optimize performance and deliver a consistent user experience across all 

connected devices54.  

Virtual Modularity can increase the lifespan of devices by distributing workloads and optimizing 

resource usage across a network of connected devices, rather than relying on a single device to handle 

all tasks. Since different devices in the ecosystem can share and collaborate on tasks, the wear and 

tear on individual devices is reduced. For example, a smartphone may offload demanding processing 

tasks to a more powerful device, such as a tablet or computer, thereby reducing its own strain and 

energy consumption. This collaborative approach helps prevent any one device from being 

overworked, which can extend its operational life. Additionally, as new devices are added to the 

system, older devices can continue to contribute and function effectively within the network, further 

extending their useful life by leveraging the collective power and capabilities of the entire ecosystem. 

Older devices can have their lifetime increased thanks to the extra computing, storage resources 

delivered by other devices in the pool. 

 

Reuse of components or systems in a downgraded or requalified use case  

Re-use: One concept called the “2nd life” is actually the re-use of parts of systems.   Such re-use could be 

adapted to edge AI as far as some basic rules are followed. First, it is possible to extract the edge AI HW/SW 

module which is performing a set of functions. For example, this module performs classification for 

images, movement detection, sound recognition, etc. Second, the edge AI module can be requalified and 

 

53 https://en.wikipedia.org/wiki/CAMM_(memory_module) 
54 This concept is developed for example in the Computing Continuum approach, and examples are the Continuity 
feature on Apple devices or the “super device” in HarmonyOS. 
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recertified downgrading its quality level. A module implemented in aeronautic systems could be reused 

in automotive or industrial applications. A module used in industrial could be reused in consumer 

applications. Third, an AI system may be re-trained55 to fit the “2nd life” similar use case, going for example 

from smart manufacturing to smart home. Last, the business model will be affordable only if such “2nd 

life” use is on a significant volume scale. A specific edge AI embedded module integrated in tens of 

thousands of cars could be removed and transferred in a new consumer product being sold on the market.  

 

2.1.6.4 Major Challenge 4: Ensuring European sustainability of embedded intelligence 

2.1.6.4.1 State of the art 

 

Edge computing and Artificial Intelligence are quickly becoming more and more tied together, converging 

towards the unified concept of Embedded Artificial Intelligence. To ensure the growth of this emerging 

technologies it is crucial that the European ecosystem of companies and academia can strategically cover 

all the steps of the associated value chain. This means covering the entire stack starting from the 

Embedded Artificial Intelligence hardware, including all the software layers required to exploit the 

hardware functionalities and to develop the final applications, the engineering the tools for AI 

development and the data sets, with a trustable and certifiable environment.  

Economic and environmental sustainability represents to key factors when defining actions and 

investments promoting the coverage of the value chain and of the technology stack. Technology is 

strongly affected by sustainability that, very often, tips the scale between the ones that are promising, 

but not practically usable, and the ones making the difference. E.g. cloud computing, based on data 

centers, plays a fundamental role for the digitalization process. However, data centers consume a lot of 

resources (energy56, water, etc.), they are responsible for significant carbon emissions during their entire 

lifecycle and generate a lot of electronic and chemical waste. 

Today, the percentage of worldwide electricity consumed by datacenters and data transmission networks 

is 2 to 3%. “Rapid improvements in energy efficiency have, however, helped moderate growth in energy 

demand. Data centres and data transmission networks are responsible for 1% of energy-related GHG 

emissions” 57. A report from January 2024 of IEA58 indicates that “Global electricity demand from data 

centers could double towards 2026” (see Figure 15). Interestingly, the electricity demand to process 

crypto-currencies seems still to surpass the consumption related to AI in 2026 (see Figure 16). 

 

55 In the domain of AI using LLMs, the extension of lifetime of foundational models could be performed by several 

approaches, e.g by evolution, i.e. fine-tuning of the model. It might also be possible to “retune” the use of the LLMs in 

the latent space, i.e. without changing the parameters of the networks, but only by changing the context of the 

“prompts”. This needs further analysis for being effectively applicable for practical reuse.  

56 Andrae, Anders. (2017). Total Consumer Power Consumption Forecast 
57 https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks#tracking, captured 
in August 2024 
58 https://iea.blob.core.windows.net/assets/6b2fd954-2017-408e-bf08-952fdd62118a/Electricity2024-
Analysisandforecastto2026.pdf  

https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks#tracking
https://iea.blob.core.windows.net/assets/6b2fd954-2017-408e-bf08-952fdd62118a/Electricity2024-Analysisandforecastto2026.pdf
https://iea.blob.core.windows.net/assets/6b2fd954-2017-408e-bf08-952fdd62118a/Electricity2024-Analysisandforecastto2026.pdf
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Figure 15: Forecast of growth of global electricity demand from data centers, from 72 

 

Figure 16: growth of cryptocurrency and AI centric data centers between 2022 and 2026, from 72 
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Data centers are progressively becoming more efficient, but shifting the computing to the edge, for 

example, allows to temporally reduce data traffic, data centers storage and processing.  However, only a 

new computing paradigm could significantly reduce their environmental footprint and ensure 

sustainability. Edge Computing could contribute to reach this goal by the introduction of ultra-low power 

and efficient computing solutions, and Embedded Intelligence (and collaborative AI agents approach) can 

significantly contribute to optimize their operations and, directly and indirectly, their overall energy 

consumption profile. 

Shifting to green energy is certainly a complementary approach to ensure sustainability, but the 

conjunction of AI and edge computing, the Embedded AI, has the potential to provide intrinsically 

sustainable solutions with a wider and more consolidated impact. Indeed, a more effective and longer-

term approach to sustainable digitalization implies reconsidering the current models adopted for data 

storage, filtering, analysis, processing (including AI training itself), and communication. By embracing Edge 

Computing, for example, it is possible to significantly reduce the amount of useless and wasteful data 

flowing to and from the cloud and data centers, because it means adopting architectural and structural 

solutions that are more efficient and that permanently reduce the overall power consumption. These 

solutions bring also other important benefits such as real-time data analysis, reduced memory and storage 

capacity and better data protection. The Edge Computing paradigm also makes AI more sustainable: it is 

evident that cloud-based machine learning inference is characterized by a huge network load, with a 

serious impact on power consumption and huge costs for organizations. Transferring machine learning 

inference and data pruning to the edge, for example, could exponentially decrease the digitization costs 

and enable sustainable businesses. To avoid this type of drawbacks, new AI algorithm specifically tailored 

for embedded systems, in conjunction with new HW components (e.g. based on neuromorphic 

architectures), should be design and developed and, considering the application areas, in some cases, this 

could lead to more specialized and extremely efficient solutions. 

Sustainability of Edge Computing and AI is affected by many technological factors, which require 

investments to consolidate and strengthen EU global positioning, generating a potential positive fallback   

on the sustainability of future digitalization solutions and related applications. GAMAM already master 

these technologies and are already controlling the complete value chain and technology stack associated 

with them: to achieve strategic autonomy in this field, Europe must cover the entire value chain, 

consolidating the existing segments, identifying/filling the technology gaps, and leveraging on a strong 

cooperation between the European stakeholders, with a particular attention to SMEs (which generate a 

large part of European GDP). From this perspective, European coordination to develop AI, edge computing 

and Embedded AI technologies is fundamental to create a sustainable value chain, based on solid 

alliances, and capable to support the European key vertical applications. 

Ensuring sustainability for Embedded AI in Europe involves several key initiatives: open-source hardware 

can drive innovation and reduce costs, while energy efficiency improvements are critical for sustainable 

development. Engineering support represents the third key factor and is necessary to advance sustainable 

Embedded AI from several perspectives: optimize the energy profile of Embedded AI solutions (technical 

and environmental levels), tackle the lack of expertise and of human resources (operational/engineering 

level), keep the costs of these solutions sustainable (economic). For example, by mastering the adoption 

of new Embedded AI techniques, such as transformers and large language models (LLMs) with a focus on 
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federation of smaller specialized models developed in Europe59, and integrating them with efficient 

accelerators and algorithms, Europe can maintain a competitive edge. This is crucial for many vertical 

domains that are key for Europe: for example, in the domain of autonomous systems, Europe has the 

potential to lead in the development of autonomous vehicles and robots, leveraging advanced AI and 

embedded intelligence. The necessity to ensure an efficient engineering process, with consequent short 

time to market, is motivated by the speed of global market evolution: for example, the emergence of 

cheap Chinese RISC-V microcontrollers emphasizes the necessity for fast development, robust, cost-

effective computing solutions made in Europe. Another example from a vertical application perspective 

is the partitioning of complex systems on a chip (SoC) into chiplets and interposers, which requires the 

development of an ecosystem of interoperable chiplets, comprehensive architecture and engineering 

solution to support this approach: the automotive market can significantly benefit from this, maintaining 

Europe at the global market forefront. 

Sustainability can be measured also in term of democratizing technology use, to make it more accessible 

to a broader community of users and facilitate market entry to startups and SMEs: natural language 

interfaces for example could contribute to facilitate the access to digital technologies. This requires that 

the associated AI models are trained with European data covering European languages, respecting 

European ethics. Additionally, democratizing technology means also supporting the diversity of European 

computing systems/chips, simplifying their programmability and consolidating this diversity through 

interoperability. This is also crucial to support the research into new computing paradigms, like 

neuromorphic and analog computing and to ensure they can reach high TRL levels (i.e. 7, 8 and 9). 

One of the major challenges that need to be accounted for in the next few years is related to the design 

of progressively more complex electronic systems to support advanced functionalities such as AI and 

cognitive functionality, especially on the edge. This is particularly challenging in the European landscape, 

which is dominated by small and medium enterprises (SMEs) with only some large actors that can invest 

and support larger-scale projects. To consolidate and strengthen European competitiveness and ensure 

sustainability in advanced Embedded AI solutions it is therefore crucial to create an ecosystem covering 

the entire value chain, in which SMEs can cooperate and increase their level of innovation and 

productivity. The definition of open industrial standards and a market of Intellectual Properties (IPs) is 

crucial to accelerate the design and development of these solution, guaranteeing EU competitiveness and 

increasing the market dimensions.  Open-source software, hardware and engineering tools can play an 

extremely important role in this regard, because they allow to significantly reduce engineering costs for 

licensing and verification, lowering the entry barrier to design innovative products. 

 

2.1.6.4.2 Key focus areas 

 

Leveraging Open-source Hardware and Software for Innovation and Cost Reduction 

Open-source Hardware and Software are drivers of innovation and cost reduction in the fields of Edge 

Computing and Embedded AI, allowing democratization of design and creating a collaborative 

environment where innovation can emerge and making possible the development of cutting-edge 

 

59 For example, see https://mistral.ai/ 
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solutions that are both affordable and highly effective. Open-source also facilitates transparency and 

security, which are essential factors for building trust and compliance with European standards. 

Developing and Federating Smaller Specialized AI Models 

The federation of smaller specialized AI models developed in Europe represents a strategic approach to 

harnessing localized expertise and enhancing the efficiency of AI applications at the edge. These models, 

when federated (in “Agentic AI”), can work together to tackle complex tasks as, or even more effectively 

than monolithic models. Promoting the development of these models in Europe contributes to the 

alignment of technology with European technologies and applications necessities, leveraging regional 

strengths in AI research and development. Specialized agents can be derived from few foundation models 

(made by few European companies or from Open Source) by fine tuning that can be achieved by SMEs or 

start-ups, as this specialization requires less computing power and data than the creation of a foundation 

model. 

Training Models with European Data and Ethical Compliance 

For AI models to be truly sustainable and beneficial to Europe, they must be trained on data that covers 

European languages and reflects the diverse cultural and social contexts of the continent. This ensures 

that AI applications are more accurate, inclusive, and useful across different European regions. 

Additionally, adherence to European ethical standards in AI development is crucial. This can be achieved: 

• Finding solutions which ensure privacy, fairness, and transparency in AI systems, thereby aligning 

technological advancements with the core values and regulations of Europe. 

• Allowing those AI to work at the edge, hence promoting the development of specialized AI chips 

for edge AI, this will facilitate access to digital technologies to a broad audience.  

• Supporting natural language interfaces which enable users to interact with technology in intuitive 

ways, breaking down barriers to adoption and use, in a continent characterized by cultural, 

societal and language diversity. 

• Increasing the re-use and sharing of knowledge and models generated by embedded 

intelligence, improving the energy- and cost-efficiency of AI training, and adopting new 

benchmarking AI approach oriented to sustainability. 

Deploying Efficient and Sustainable Embedded AI-oriented ECS 

Efficient ECS like new memories, accelerators and algorithms specifically conceived for Embedded AI are 

fundamental to the performance and sustainability of domain. Developing and deploying these 

technologies within Europe ensures that AI applications can operate with high efficiency, reducing energy 

consumption and enhancing overall system performance. Most current designs involve perception-based 

AI accelerators, but Europe should be at the forefront to use new disruptive technologies such as 

generative AI and ensuring its sovereignty by developing the HW and SW that will enable it at the edge. 

This will require for example: 

• New materials and substrates oriented to low power consumption. 

• New generations of embedded ultra-low power electronic components. 

• 3D-based device scaling for low power consumption and high level of integration. 

• Chiplet-based solutions promoting modularity and reuse (sustainability by design). 

• Strategies for self-powering nodes/systems on the edge and efficient cooling solutions. 

• Policies and operational algorithms for power consumption at edge computing level. 
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• Efficient and secure code mobility. 

• Advanced Neuromorphic components. 

• Generative AI for the edge. 

• Inclusion of existing embedded systems on the edge (huge market opportunity). 

Accelerating Development of Robust, Cost-Effective Solutions 

There is a pressing need for the rapid development of robust, cost-effective computing solutions made in 

Europe. These solutions must be designed to meet the specific demands of European markets and 

regulatory environments. By focusing on speed of realization, reliability, and cost-effectiveness, European 

manufacturers can remain competitive and responsive to global and local market needs. This involves 

developing the full spectrum of technologies, from hardware innovations to sophisticated software 

solutions, to new tools allowing to increase productivity ensuring that European products stand out in the 

global marketplace. For example, this must include: 

• Engineering process automation for full lifecycle support of Embedded AI solutions. 

• Edge Computing and Embedded AI security and sustainability by design. 

• Engineering support for Embedded AI verification and certification, addressing end-to-end edge 

solutions. 

• Support for education and professional training to enable, facilitate, improve and speed-up the 

design, development and deploy of Embedded AI. 

• Engineering process automation based on generative AI. 

 

 

2.1.7 Timeline 
 

As the field concerning Artificial Intelligence is evolving very rapidly, all predictions are subjective, 

especially for 2035 and beyond (the foundation paper about Transformers, which lead to the current 

LLMs, was only published in 201760, so in 2015 nobody could have predicted what we are seeing today in 

this field). It is why the long-term column (2035 and beyond, is rather empty). 

Legend:  

• (EC): edge computing 

• (eAI:) Embedded Artificial Intelligence 

 

 

60 https://arxiv.org/abs/1706.03762 
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MAJOR CHALLENGE TOPIC SHORT TERM MEDIUM TERM LONG TERM 

 2025-2029 2030-2034 2035 AND BEYOND 

Major Challenge 1: 

increasing the 

energy efficiency of 

computing systems 

Processing data 

locally and 

reducing data 

movements:  

towards the 

computing 

continuum 

Move towards the continuum 

of computing: orchestrators 

can select computing where it 

is the most efficient (statically). 

Using the same software 

development infrastructure 

from deep edge to edge and 

possibly HPC applications. Use 

of similar building blocks from 

deep edge to edge devices. 

Developing open architectures 

(for fast development) with 

maximum reuse of tools and 

frameworks 

Development of edge (ex: fog) 

type of computing (peer to 

peer), development of 

distributed systems e.g. for 

federated learning or fine 

tuning of LLMs reducing need 

to exchange data. 

Unified memory: avoid copying 

data from the CPU memory to 

the accelerator(s) memory(ies). 

Advance storage management:  

towards distributed storage 

supporting the continuum of 

computing approach also for 

storage. 

Move towards the continuum 

of computing: orchestrators 

can select or move computing 

where it is the most efficient 

(dynamically) avoiding data 

movements. 

 

 

Co-Design of 

algorithms, 

hardware, 

software 

AI can be used to help this 

codesign. This is mainly a topic 

for the “methodology and 

tools” chapter. 

Tools allowing fast realization of 

hardware accelerators when a 

new paradigm emerges (e.g. 

Transformers/generative AI). 

Tools allowing semi-automatic 

design exploration of the space 

of configurations, including 

variants of algorithms, 

computing paradigms, 

hardware performances, etc. 

Complete 2.5D (interposers and 

chiplets) ecosystem, with tools 

increasing productivity and 

reuse of chiplets in different 

designs 

Automatic adaptation of 

complex neural networks or 

emerging AI algorithms to 

embedded systems with a 

Systems can generate hardware 

(orchestrators, accelerators, 

storage and communication) 

and the associated low-level 

software from high level 

specifications.  

Auto-configuration of a 

distributed set of resources to 

satisfy the application 

requirements (functional and 

non-functional) 

Supporting tools integrating 

multiple computing paradigms 

in the same package. 
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61 It seems that Apple is doing something similar in its « Apple Intelligence » 

minimum loss of performances 

Efficient 

management of 

storage resources 

Compressing weights (from 

FP32 to INT4 or less), pruning 

neural networks. Federations of 

multiples devices into “meta-

devices” that share storage 

resources.  

Dynamic use of adapters/LoRA 

to switch the specialization of a 

foundation model (changing a 

small proportion of its 

weights61).  Easily upgradable 

LLM accelerators, fine tuning 

“on premises”.  

Innovation in memory 

technology: Using directly the 

parameters of neural networks 

from non-volatile memory 

without transferring them to 

RAM, computing near/in 

memory  

Create gateways between 

various solutions, beyond 

ONNX (for eAI) 

New memory technology with 

last cost, fast access and certain 

level of non-volatility allowing 

the redefine completely the 

memory hierarchy. 

 

Energy 

proportionality 

Scalable accelerators where 

parts can be switched off. 

Refining dynamic power 

management techniques to 

ensure that energy 

consumption closely matches 

the workload, minimizing 

power wastage during low 

activity periods. 

 Advancements in adaptive 

voltage scaling, power gating, 

and more efficient power 

distribution networks.  

Use AI to dynamically manage 

the repartition of active parts in 

a chip.  

 

Ultra-low standby 

current 

Improving energy efficiency at 

low energy level, reducing 

leakage currents in devices, 

optimizing power management 

Pushes further towards near-

zero standby power. 

Overcoming the limitations of 

current materials.  
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at the software level. 

Develop always-on units that 

can react to information in 

order to wake-up the rest of 

the system.  

Developing new semiconductor 

technologies that can operate 

at ultra-low power levels. 

Integrating advanced energy 

harvesting techniques to 

sustain device functionality 

even in standby mode. 

Development of 

innovative 

hardware 

architectures 

 

 Development of computing 

paradigms (e.g. using physics to 

perform computing, e.g. 

neuromorphic). Use of other 

technologies than silicon (e.g. 

photonics) 

Use of 2.5D, interposers and 

chiplets, with efficient 

interconnection network, e.g. 

using photonics) 

Creating an ecosystem around 

interposers and chiplets, with 

interoperability standards 

New In-memory computing 

accelerators 

Supporting software for all 

these hardware innovations 

Dynamic instantiation of multi-

paradigm computing resources 

according to the specifications 

of the task to be performed. 

New (de facto) standard 

allowing automatic interfacing, 

discovery, and configuration of 

resources (computing, storage) 

Global reconfiguration of the 

resources to satisfy the 

functional and non-functional 

requirements (latency, energy, 

etc.) 

Development of hybrid 

architectures, with smooth 

integration of various 

processing paradigms (classical, 

neuromorphic, deep learning), 

including new OSs supporting 

distributed computing of 

multiple computing paradigms 

Advanced In-memory 

computing accelerators 

 

Integration in the same package 

of multiple computing 

paradigms (classical, Deep 

Learning, neuromorphic, 

photonic, quantum, etc.)  

Exploring potential use of 

quantum computing in Artificial 

Intelligence? 
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Major Challenge 

2: managing the 

increasing 

complexity of 

systems 

Balanced 

mechanisms 

between 

performance and 

interoperability 

 

Exposing the non-functional 

characteristic of 

devices/blocks and off-line 

optimization when 

combining the 

devices/blocks 

Explore AI techniques for 

Self-x 

On-line (dynamic) 

reconfiguration of the 

system to fulfil the 

requirements that can 

dynamically change (Self-x) 

 

Use of AI techniques for 

Self-x.  

Drive partitioning through 

standards 

Developing 

distributed edge 

computing 

systems  

 

Introduce standard APIs 

comprising Web based 

technologies; support of a 

layered AI architecture 

See items above in 

Increasing the energy 

efficiency of computing 

systems 

Development by AI, e.g. of 

communication and 

functional collaboration, 

orchestration. Agentic (AI) 

approach 

 

See items above in 

Increasing the energy 

efficiency of computing 

systems 

  

 

 

See items above in 

Increasing the energy 

efficiency of computing 

systems 

Scalable and 

Modular AI  

 

Decomposition of SoCs, e.g., 

into chiplets 

 

See items above in 

Increasing the energy 

efficiency of computing 

systems 

Ecosystem of chiplets for 

embedded control and 

embedded AI established 

Data and learning driven 

circuits design  

See also items above in 

Increasing the energy 

efficiency of computing 

systems  

 

 

See items above in 

Increasing the energy 

efficiency of computing 

systems 

Easy adaptation 

of models 

 

Development of efficient 

and automated transfer 

learning: only partial 

relearning required to adapt 

to a new application (Ex: 

Federative learning) 

Create a European training 

reference database for same 

class of applications/use 

Optimization of the Neural 

Network topology from a 

generically learned 

networks to an application 

specific one. 

 

Generic model based digital 

AI development system  
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cases network learning 

Easy adaptation 

of modules 

 

Easy migration of 

application on different 

computing platforms 

(different CPU – x86, ARM, 

RISC-V, different 

accelerators) 

Use of HW virtualization 

Automatic transcoding of 

application for a particular 

hardware instance (à la 

Rosetta 2) 

Generic model based digital 

development system  

Realizing self-X  

Self-optimize, 

reconfiguration 

and self-

management 

 

Add self-assessment 

features to edge devices 

 

 

Explore what AI techniques 

(such as LLMs) can do 

Automatic reconfiguration 

of operational resources 

following the self-

assessment to fulfil the goal 

in the most efficient way 

Deploy AI based approaches 

for self-optimization 

Modelling simulation tools 

for scalable digital twins 

Using AI 

techniques to 

help in 

complexity 

management 

 

Using AI techniques for the 

assessment of solutions and 

decrease the design space 

exploration 

Automatic generation of 

architecture according to a 

certain set of requirements 

(in a specific domain) 

Modelling simulation tools 

for scalable digital twins 

 Using AI 

techniques 

modeling of  

interactions 

among system 

components  

Explore usage of AI-based 

methods, tools and 

environments for the 

modeling and simulating of 

the system designs and their 

components 

 Leveraging networks of 

agents (LLMs and other AI-

based programs) for 

automatized modeling and 

simulations 
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Major Challenge 

3: supporting the 

increasing 

lifespan of 

devices and 

systems 

HW supporting 

software 

upgradability  

(eAI) 

Create European training 

reference databases for 

same class of 

applications/use cases 

network learning 

Develop European training 

benchmarks (Methods and 

methodologies) 

Build framework tools for 

HW/SW for fast validation 

and qualification 

Establish interfaces 

standards compatible with 

most of AI approaches 

 

HW virtualization based on 

AI algorithms 

Generic AI functions 

virtualization 

 

European training standards 

(Compliance/Certification) 

 Certifiable AI (and paths 

towards explainability and 

interpretability)  

 

Interoperability and 

extensibility within 

computing continuum 

Explainable AI 

Universal control 

Realizing self-X  

Also partially in 

Managing the 

increasing 

complexity of 

systems 

(eAI) 

Unsupervised learning 

technics 

Development of efficient 

and automated transfer 

learning: only partial 

relearning required to adapt 

to a new application (Ex: 

Federative learning) 

 

HW virtualization based on 

AI algorithms 

 

Generic AI functions 

virtualization 

 

Certifiable AI (and paths 

towards explainability and 

interpretability) 

Use of Mixed of AI Agents 

and/or Transformers for 

generative AI on self-X 

Techs 

Explainable AI 

Universal control 

Improving 

interoperability 

(with the same 

class of 

application) and 

between classes, 

modularity, and 

complementarity 

between 

generations of 

Developing open 

architectures (to quickly 

develop) with maximum 

reuse of tools and 

frameworks 

Interfaces standards (more 

than solutions) (could help 

explainability move from 

Generic functions modules 

by class of applications/use 

cases + virtualization 

Use of Mixed of AI Agents 

and/or Transformers for 

generative AI  

Chiplets 
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devices. 

(EC)  

Also, partially in 

Increasing the 

energy efficiency 

of computing 

systems 

black to grey boxes) Virtual Modularity 

Improving 

interoperability 

of AI functions 

(with the same 

class of 

application) and 

between classes, 

modularity, and 

complementarity 

between 

generations of 

devices. 

(eAI) 

Also, partially in 

Increasing the 

energy efficiency 

of computing 

systems 

Developing open AI 

architectures (to fast 

develop) with maximum 

reuse of tools and 

frameworks 

Interfaces standards (more 

than solutions) (could help 

explainability of AI with a 

move from black to grey 

boxes) 

Clarified requirements for 

embedded AI in industry 

Applications and Apps 

working simultaneously 

through different 

equipments 

Generic AI functions 

modules by class of 

applications/use cases + 

virtualization 

Universal control 

Developing the 

concept of 

2nd life for 

components 

(EC) 

(Link with 

sustainability) 

Inclusion of existing 

embedded systems on the 

edge (huge market 

opportunity)  

 

Generic set of functions for 

multi-applications/use cases 

Library of generic set of 

functions (Standardization) 

Basic data collection for 

predictive maintenance 

Global data collections for 

predictive maintenance by 

applications/use cases 

Standardize flow for HW/SW 

qualification of generic set 

of functions (including re-

training) which are used in a 

downgraded application/use 

case 

 

Full chain of reuse / 

Ecodesign conception 
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Major 

Challenge 4: 

ensuring 

European 

sustainability of 

embedded 

intelligence 

Leveraging 

Open-source 

Hardware and 

Software for 

Innovation and 

Cost Reduction 

Open-source eAI software 

Open-source training 

datasets for eAI 

Open-source foundation 

models for eAI 

Open-source eAI hardware  

Developing and 

Federating 

Smaller 

Specialized AI 

Models 

AI specialized models 

tailored for eAI 

eAI models for specific 

applications 

eAI models modularity and 

reuse 

Partial eAI models federation 

Interdisciplinary eAI models 

eAI models covering cross-

domain applications 

Extensive eAI models 

federation   

 

Training 

Models with 

European Data 

and Ethical 

Compliance 

European-native training 

data sets 

Methods and HW/SW 

solutions respecting privacy, 

fairness, and transparency 

Natural language support in 

embedded systems 

Energy- and cost-efficiency 

of eAI training 

Specialized eAI chip to 

facilitate market entry 

European-native training 

data sets 

Methods and HW/SW 

solutions respecting privacy, 

fairness, and transparency 

Natural language support in 

embedded systems 

Energy- and cost-efficiency 

of eAI training 

 

Deploying 

Efficient and 

Sustainable 

Embedded AI-

oriented ECS 

Materials and electronic 

components oriented to low 

and ultralow power 

solutions 

Strategies for self-powering 

nodes/systems on the edge 

Efficient cooling solutions 

Chiplet-based solutions for 

modularity and reuse 

(sustainability by design) 

Inclusion of legacy 

3D-based device scaling for 

low energy consumption 

Efficient and secure code 

mobility. 

Advanced Neuromorphic 

components. 
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embedded systems 

Neuromorphic components 

Integrated power 

consumption management 

Accelerating 

Development 

of Robust, 

Cost-Effective 

Solutions 

Engineering process 

automation 

Continuous engineering 

across the product life cycle 

eAI security and 

sustainability by design 

eAI HW and SW modularity 

Adoption of generative AI in 

the eAI engineering process  

Holistic development 

environment for eAI 

Engineering support for 

verification and certification  

eAI security and 

sustainability by design 

Reuse of knowledge and 

models generated by 

embedded intelligence 

 


